复习引入1.等比数列的定义:2.等比数列通项公式:),(0111qaqaann),(01qaqaamnmn),(01qNnqaann复习引入3.等比数列的判定:2121中项法:0定义法:nnnnnaaaqNnqaa),(4.性质:若m+n=p+q,则am·an=ap·aq.等比数列的前n项和nnnaaaaaS1321=?11212111nnnqaqaqaqaaS=?即11nqa21qanqSnnqaaSq111)(q-1等比数列,公比为,它的前项和}{naqn错位相减法qa11aSn21nqa11nqa21qa21nqaqa1nqa1qqaSnn111)(n+1判断是非n2222132n点击21211)(nn)(2)()(21211n12168421n)(2n011)11(55555nn个)()(1111qqqaSnn)(111qqqaaSnn11nnqaa1为常数列数列时,1当naSaqnn已知}{na是等比数列,请完成下表:a1、q、n、an、Sn中知三求二例1题号a1qnanSn(1)326(2)8(3)217329681279663681189例2等比数列(1)求其前8项的和(2)求第5项到第10项的和.,81,41,21【解法1】此等比数列的第5项到第10项构成一个首项是2112112165)(S10421211024635a521q216n的等比数列公比为,项数【解法2】1095aaa410SS2112112121121121410)()(1042121102463乘公比错位相减小结111111qnaqqqaSnn)(或11111qnaqqqaaSnn知三求二等比数列的前n项和公式数学源于生活数学用于生活