2014年甘肃省定西市中考数学试题(含答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

12014年甘肃省定西市中考数学试卷参考答案一、选择题:本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填涂在答题卡上.1.(3分)﹣3的绝对值是(A)A.3B.﹣3C.﹣D.2.(3分)节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350000000用科学记数法表示为(B)A.3.5×107B.3.5×108C.3.5×109D.3.5×10103.(3分)如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是(D)A.B.C.D.4.(3分)下列计算错误的是(B)A.•=B.+=C.÷=2D.=25.(3分)将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有(C)A.4个B.3个C.2个D.1个6.(3分)下列图形中,是轴对称图形又是中心对称图形的是(D)A.B.C.D.7.(3分)已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O的位置关系是(A)A.相交B.相切C.相离D.无法判断8.(3分)用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为(B)A.x(5+x)=6B.x(5﹣x)=6C.x(10﹣x)=6D.x(10﹣2x)=69.(3分)二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点(D)A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)10.(3分)如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之闻函数关系的是(C)2A.B.C.D.二、填空题:本大题共8小题,每小题4分,共32分.把答案写在答题卡中的横线上.11.(4分)分解因式:2a2﹣4a+2=2(a﹣1)2.12.(4分)化简:=x+2.13.(4分)等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是8cm.14.(4分)一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a=1.15.(4分)△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=60°.16.(4分)已知x、y为实数,且y=﹣+4,则x﹣y=﹣1或﹣7.17.(4分)如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为12.18.(4分)观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=552.三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(6分)(2014•白银)计算:(﹣2)3+×(2014+π)0﹣|﹣|+tan260°.解答:解:原式=﹣8+﹣+3=﹣5.320.(6分)阅读理解:我们把称作二阶行列式,规定他的运算法则为=ad﹣bc.如=2×5﹣3×4=﹣2.[来源:学科网]如果有>0,求x的解集.解答:解:由题意得2x﹣(3﹣x)>0,去括号得:2x﹣3+x>0,移项合并同类项得:3x>3,把x的系数化为1得:x>1.21.(8分)如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.解答:(1)解:如图所示,DE就是要求作的AB边上的中垂线;(2)证明:∵DE是AB边上的中垂线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.22.(8分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条只显示,且∠CAB=75°.(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732)4(1)求车架档AD的长;(2)求车座点E到车架档AB的距离(结果精确到1cm).解答:解:(1)∵在Rt△ACD中,AC=45cm,DC=60cm∴AD==75(cm),∴车架档AD的长是75cm;(2)过点E作EF⊥AB,垂足为F,∵AE=AC+CE=(45+20)cm,∴EF=AEsin75°=(45+20)sin75°≈62.7835≈63(cm),∴车座点E到车架档AB的距离约是63cm.23.(10分)如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.解答:解:(1)∵直y=mx与双曲线y=相交于A(﹣1,a)、B两点,∴B点横坐标为1,即C(1,0),∵△AOC的面积为1,∴A(﹣1,2),5将A(﹣1,2)代入y=mx,y=可得m=﹣2,n=﹣2;(2)设直线AC的解析式为y=kx+b,∵y=kx+b经过点A(﹣1,2)、C(1,0)∴,解得k=﹣1,b=1,∴直线AC的解析式为y=﹣x+1.四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.(8分)在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点(x,y)在函数y=﹣x+5图象上的概率.解答:解:列表得:yx(x,y)12341(1,2)(1,3)(1,4)2(2,1)(2,3)(2,4)3(3,1)(3,2)(3,4)4(4,1)(4,2)(4,3)(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.625.(10分)某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查,被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价,图1和图2是该小组采集数据后绘制的两幅统计图,经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息.解答下列问题:(1)此次调查的学生人数为200;(2)条形统计图中存在错误的是C(填A、B、C、D中的一个),并在图中加以改正;(3)在图2中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?解答:解:(1)∵40÷20%=200,80÷40%=200,∴此次调查的学生人数为200;(2)由(1)可知C条形高度错误,应为:200×(1﹣20%﹣40%﹣15%)=200×25%=50,即C的条形高度改为50;故答案为:200;C;(3)D的人数为:200×15%=30;(4)600×(20%+40%)=360(人),答:该校对此活动“非常喜欢”和“比较喜欢”的学生有360人.26.(10分)D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;7(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.)解答:(1)证明:∵D、E分别是AB、AC边的中点,∴DE∥BC,且DE=BC,同理,GF∥BC,且GF=BC,∴DE∥GF且DE=GF,∴四边形DEFG是平行四边形;(2)解:当OA=BC时,平行四边形DEFG是菱形.27.(10分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.[来源:Zxxk.Com](1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.解答:(1)证明:连接OD,OE,∵AB为圆O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,E为斜边BC的中点,∴DE=BE,在△OBE和△ODE中,,∴△OBE≌△ODE(SSS),∴∠ODE=∠ABC=90°,则DE为圆O的切线;8(2)在Rt△ABC中,∠BAC=30°,∴BC=AC,∵BC=2DE=4,∴AC=8,又∵∠C=60°,DE=DC,∴△DEC为等边三角形,即DC=DE=2,则AD=AC﹣DC=6.28.(12分)如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)联结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.解答:解:(1)抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x﹣1)2﹣3,顶点M(1,﹣3),令x=0,则y=(0﹣1)2﹣3=﹣2,点A(0,﹣2),x=3时,y=(3﹣1)2﹣3=4﹣3=1,点B(3,1);(2)过点B作BE⊥AO于E,过点M作MF⊥AO于M,∵EB=EA=3,∴∠EAB=∠EBA=45°,同理可求∠FAM=∠FMA=45°,∴△ABE∽△AMF,[来源:Z§xx§k.Com]9∴==,又∵∠BAM=180°﹣45°×2=90°,∴tan∠ABM==;(3)过点P作PH⊥x轴于H,∵y=(x﹣1)2﹣3=x2﹣2x﹣2,∴设点P(x,x2﹣2x﹣2),①点P在x轴的上方时,=,整理得,3x2﹣7x﹣6=0,解得x1=﹣(舍去),x2=3,∴点P的坐标为(3,1);②点P在x轴下方时,=,整理得,3x2﹣5x﹣6=0,解得x1=(舍去),x2=,x=时,x2﹣2x﹣2=﹣×=﹣,∴点P的坐标为(,﹣),综上所述,点P的坐标为(3,1)或(,﹣).

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功