5.1.2认识分式(分式的基本性质)学习目标12理解并掌握分式的基本性质.会运用分式的基本性质进行分式的约分和通分.下列式子中,是分式的有。2yx③yx④3a①x234⑤温故知新a31②xx224⑥分式有意义的条件是什么?分式无意义的条件是什么?分式的值为零条件是什么?BABABA分母B≠0分母B=0分子A=0且分母B≠0温故知新认识分式基本性质约分通分基本性质?10452相等吗与【分数的基本性质】分数的分子与分母同时乘以(或除以)一个不等于零的数,分数的值不变.2.这些分数相等的依据是什么?1.把3个苹果平均分给6个同学,每个同学得到几个苹果?36解:一般地,对于任意一个分数,有ab其中a,b,c是不等于零的整数.aacbbc,0,aaccbbc()基本性质思考你能用字母的形式表示分数的基本性质吗?想一想:类比分数的基本性质,你能猜想分式有什么性质吗?基本性质分式与相等吗?aa221与呢?mnn2mn思考(a≠0)(mn≠0)分式的基本性质:分式的分子与分母乘以(或除以)同一个不等于0的整式,分式的值不变.上述性质可以用式表示为:0AACAACCBBCBBC(),.其中A,B,C是整式.知识要点(1)分子、分母应同时做乘、除法中的同一种运算;(2)所乘(或除以)的必须是同一个整式;(3)所乘(或除以)的整式不等于零.应用分式的基本性质时需要注意什么?基本性质思考下列等式的右边是怎样从左边得到的?(1)(0)22bbyyxxy(2)axabxbb解:(1)2xby=2xyby=2xyax解:(2)bxaxx=bxxb=a思考:为什么(1)要给出y≠0,(2)不给出x≠0?基本性质ab32233106xxxyxyxxyyx()(),();()2x2xa22abb2221220.abbababaab()()(),()填空:看分母如何变化,想分子如何变化.看分子如何变化,想分母如何变化.基本性质想一想:为什么(1)中不给出x≠0,而(2)中却给出了b≠0?分式的基本性质注意:(1)“都”(2)“同一个”(3)“不为0”约分通分探究:(1)有什么关系?(2)有什么关系?有什么关系?xx与yyxx与-yyxx与--yyxxx解:==.yyy分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;若只改变其中一个的符号或三个全变号,分式的值变为原来分式值的相反数.基本性质认识分式基本性质约分通分填空:分式约分446362418aababbababa4)4)(2()3)(2(8622222332填空:②联想分数约分如何对分式进行约分?与分数约分类似,关键是要找出分式的分子与分母的公因式.分式约分446362418aababbababa4)4)(2()3)(2(8622222332①这种化简叫做什么?它的依据是什么?③类比分数的约分,什么叫做分式的约分?把一个分式的分子与分母的公因式约去,这种变形称为分式的约分.知识要点约分的定义在约分时,小颖和小明出现了分歧.你对他们两人的做法有什么看法?分式约分•一般约分要彻底,使分子、分母没有公因式.分式的化简或计算,要使结果为最简分式或者整式.(1)判断一个分式是不是最简分式,要严格按照定义来判断,就是看分子、分母有没有公因式.(2)分子或分母是多项式时,要先把分子、分母因式分解.注意知识要点最简分式分子和分母都没有公因式的分式叫做最简分式.23225115abcabc();例1约分:分析:为约分要先找出分子和分母的公因式.找公因式方法:(1)约去系数的最大公约数.(2)约去分子分母相同因式的最低次幂.解:2322225555153315abcabcacacabcbbabc();(公因式是5abc)分式约分229269xxx().解:222933323693xxxxxxxx()(()()).分析:约分时,分子或分母若是多项式,能分解则必须先进行因式分解.再找出分子和分母的公因式进行约分.分式约分知识要点约分的基本步骤:确定公因式→约分→结果为最简分式或整式(1)若分子﹑分母都是单项式,则约去系数的最大公约数,并约去相同字母的最低次幂;(2)若分子﹑分母含有多项式,则先将多项式分解因式,然后约去分子﹑分母所有的公因式.注意事项:(1)约分前后分式的值要相等.(2)约分的关键是确定分式的分子和分母的公因式.(3)约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式.化简下列分式:2abc1ab22x-12x-2x+12abc解:ababac=ab=ac222x-1解:x-2x+1x+1x-1=x-1x+1=x-1约分的基本步骤:确定公因式→约分→结果为最简分式或整式分式约分认识分式基本性质约分通分(初涉)填空:分式通分126161124343153232155252abbbabaa3322思考:你有何发现?每一组式子发生了怎样的变形?这样的变形叫做什么?根据分式的基本性质,使分子和分母同时乘以适当的整式,不改变分式的值,将几个异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.知识要点通分的定义分式通分通分:4153)1(与cababba2223)2(与5352)3(xxxx与分析:为通分要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作为公分母,它叫做最简公分母。(三定)解:(1)最简公分母是最简公分母最简公分母41415353类比分数的通分,课后完成(2)(3)分式的基本性质内容作用约分通分注意(1)分子、分母应同时做乘、除法中的同一种运算(2)所乘(或除以)的必须是同一个整式(3)所乘(或除以)的整式不等于零进行分式运算的基础0bbmbbmmaamaam(),.(约分步骤:确定公因式→约分→结果为最简分式或整式)(符号法则)随堂检测BD1.下列各式中,与分式相等的是()2.使得等式成立的m的取值范围为()A.m=0B.m=1C.m=0或m=1D.m≠0xyx+1A.y+12xB.2y2xC.yx+1D.y-144m=77m3.下列分式是最简分式的是()4.课本P112随堂练习322aA.ab2aB.4b22a+bC.ab32a+aD.4aC1.如果把的a与b都扩大到原来的10倍,那么这个分式的值()A.不变B.扩大到原来的50倍C.扩大到原来的10倍D.缩小为原来的2.分式可变形为()课后作业Ab5a11011x1A.x-11B.1+x1C.-1+x1D.x-1D3.化简结果正确的是()A.abB.-abC.a²-b²D.b²-a²4.下列分式中,最简分式是()课后作业A22abababA.x2-1x2+1B.x+1x2-1[来源:Z*xx*k.Com]C.x2-2xy+y2x2-xyD.x2-362x+12A课后作业5.在给出的三个多项式:x²+4xy+4y²,x²-4y²,x²+2xy中,请你任选出两个分别作为分子和分母组成分式,并进行化简运算.解:答案不唯一,选择x²+4xy+4y²、x²-4y²,则.2222x4xy4yx4y2(x2y)=(x+2y)(x-2y)x2y=x-2y再见