第1章函数第1章函数、极限与连续学习指导书中部分习题解答第2章极限与连续P11一、9.100sin(!)100limlimsin(!)02121nnnnnn无穷小乘有界变量#P14三、2(3)231limsin(!)032nnnn无穷小乘有界变量第2章极限与连续P13721lim0,.1xxaxbabx已知,求211limlim011xxxxbxaxbaxxxx21lim01xxaxbx代人22211limlim111xxxxxxxbbxxx#1lim110xxbxaxxa1lim01110xxbbxb第2章极限与连续P142.求下列数列的极限2116lim(1)nnnn21122111lim1lim1nnnnnnnnnnn解2211221111ln1limlimln1limnnnnnnnnnnnnnnneee#三、2(6)第2章极限与连续P14三、3(7)3233233344411411limlim11111111xxxxxxxxxxxxxx#2233abaabbab312134limlim111111xxxxxxxxx144lim1313xxx第2章极限与连续P144.求下列数列的极限解#sin2limxxxsinsinlimlim1xxxxxx第2章极限与连续P144.求下列数列的极限1cos1cos100limcoslim1cos1xxxxxxxx03limcosxxx解11cos1cos100cos1cos1ln1cos1limlimln1cos10limxxxxxxxxxxxee120limcosxxxe22002sincos112limlim242xxxxxx#第2章极限与连续P14三、4(4)222222002022022221sin2sin1cossin2limlim2ln12ln1sinsin12limln1sinsinsin2sin21sinsin1112l414imn2lxxxxxxxxxxxxxxxxxxxx#第2章极限与连续P145.求下列数列的极限3lim12121nnn22lim1212112121lim12121lim121212limlim111122nnnnnnnnnnnnnnnnnnnnnnnnn第2章极限与连续P14#5.求下列数列的极限22lim12121222limlim2111111nnnnnnnnnnnnn第2章极限与连续P14#5.求下列数列的极限12124lim,,,0nnnnkknaaaaaa1212112limlimlim1nnnnnnknnknnnnnnknaaaaaaaaaaaaaaaaaaa12max,,,kaaaa令第2章极限与连续33lim10xxx,.6.已知,求P14解原式10,故1,于是而33lim1xxx2333231)1(1limxxxxx.0331lim10,xxxx331lim10,xxx#第2章极限与连续P159#()()()Fxfxfxa令)()0()0(affF)0()()2()()(fafafafaF0)()0(aFF0a或若,则0)()0(aFF若,则F(x)在区间[0,a]上(2)(0)faf满足零点定理条件,所以至少存在一点使得F(ξ)=0,即ffaF(0)和F(a)互为相反数考察F(x)在[0,a]上两个端点的值。第2章极限与连续P16一、5210()0xexfxax无间断点,求a=?2100lim()lim0(0)xxxfafxe.1001limlimln(1)xxyeyxy,1yex令),1ln(yx则.0,0yx时当yyy10)1ln(1lim01lim1xxex证明证明:01~xxex当时,#第2章极限与连续2lim0xxaxbcxd,,,abcd1.已知,试确定之间的关系。21lim0xxaxbcxdx2lim0xxaxbcxd2limxxaxbdcxx2lim10xabdcxxx1cP18四、解答题解1lim0xx第2章极限与连续1c22limlimxxaxbdxxaxbxxaxb2lim0xxaxbxdb为任意实数P18四、解答题12lim22011xbaaxabadxx#201adbc故:为任意实数第2章极限与连续0x22xeaxbxc2.当时,是比x2高阶的无穷小,求a,b,c的值。220lim10xxeaxbxcc1c解:P18四、解答题高阶无穷小2220011limlim0xxxxeaxbxeaxbxxx2222000111limlimlimxxxxxxeeeaxxxxxxb第2章极限与连续2222000111limlimlimxxxxxxeeeaxxxxxxbP18四、解答题2100002221limlimlimlimln1ln111ln01xxxttxxtxxttteetxt222222001limlimxxxxeaxbxceaxxx22201lim0xxeaxx222220011limlim1xxxxeexaxx0limln11xtt#第2章极限与连续1lim)(2212nnnxbxaxxxf解先求函数的非极限表达式为连续函数,求a,b.P18四、解答题521221221limlim1()lim112nnnnnnnxxxxaxbxfxxab当时,21221221lim1,lim1()lim211nnnnnnnxxxxaxbxfaxxb当时,第2章极限与连续212212212222212211limlim()limlim1111limlim111nnnnnnnnnnnnnnnnxxxxaxbxxaxbxfxxxxxxxxx当时,解先求函数的非极限表达式P18四、解答题5212212221limlim0()lim1nnnnnnnxxxxaxbxfxxaxbx当时,=0第2章极限与连续221221,1,1()lim11,121,12nnnxxaxbxxxaxbxfxabxxabxP18四、解答题5函数的非极限表达式第2章极限与连续,11lim)(lim0101xxfxx21010lim()lim,xxfxaxbxab21010lim()lim,xxfxaxbxab,11lim)(lim0101xxfxxP18四、解答题521,1,1()1,121,12xxaxbxxfxabxabx第2章极限与连续由f(x)的连续性得:,121,121babababa解得a=0,b=1.#第2章极限与连续0(1)1lim1xxx证明:0ln(1)limxxx1(1)1~xx证明:ln(1)00(1)11limlimxxxxexxln(1)1~ln(1)xex01~xxex当时,ln(1)00(1)11limlimxxxxexx#