凸轮机构(机械原理)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1、凸轮机构:凸轮是一个具有曲线轮廓的构件。含有凸轮的机构称为凸轮机构。它由凸轮、从动件和机架组成。一、凸轮机构的应用§3-1凸轮机构的应用及分类内燃机配气凸轮机构2、凸轮机构的应用多缸内燃机-配气机构进刀凸轮机构冲压机凸轮机构的优缺点•优点:–只需确定适当的凸轮轮廓曲线,–即可实现从动件复杂的运动规律;–结构简单,运动可靠。•缺点:–从动件与凸轮接触应力大,易磨损•用途:–载荷较小的运动控制一)按凸轮的形状分二、凸轮机构的分类1、盘形凸轮2、移动凸轮3、圆柱凸轮4、圆锥凸轮1、尖顶从动件2、滚子从动件3、平底从动件二)按从动件上高副元素的几何形状分三)、按凸轮与从动件的锁合方式分1、力锁合的凸轮机构2、形锁合的凸轮机构1)沟槽凸轮机构2)等宽凸轮机构3)等径凸轮机构4)主回凸轮机构摆动从动件凸轮机构(对心、偏置)移动从动件凸轮机构四)、根据从动件的运动形式分推程运动角远休止角近休止角回程运动角S(A)BCD(,S)S’S’hSAB’OeCDBOπ2S0h三、凸轮机构的工作原理基圆D’ABCDO回程角Φ’回程角Φ’现象:只要偏心距e不为0,即使AB与CD形状相同,回程速度比推程速度快。问1:如果从动件偏向O点左侧,回程速度和推程速度哪个快?问2:是否合理?摆动从动件凸轮机构基圆BCDO1rbamaxlAO2B10摆杆初始位置角0角位移,摆幅max,杆长l,中心距aSΦ'Φ'SΦSΦπ2h()(max)3)凸轮机构曲线轮廓的设计4)绘制凸轮机构工作图1)从动件运动规律的设计2)凸轮机构基本尺寸的设计移动从动件:基圆半径rb,偏心距e;摆动从动件:基圆半径rb,凸轮转动中心到从动件摆动中心的距离a及摆杆的长度l;滚子从动件:除上述外,还有滚子半径rr。平底从动件:除上述外,平底长度L。O1O2aO1erbrb四、凸轮机构的设计任务§3-2从动件常用运动规律一、基本运动规律二、组合运动规律简介三、从动件运动规律设计升-停-回-停型(RDRD)升-回-停型(RRD)升-停-回型(RDR)升-回型(RR)SΦ'ΦSΦπ2()SΦ'Φ'SΦSΦπ2()SΦ'Φ'SΦπ2()SΦ'Φπ2()运动循环的类型从动件运动规律的数学方程式类速度类加速度类跃动度位移)(fS速度ddSdtdddSdtdSv加速度222dSddtdddvdtdva跃动度333dSddtdddadtdaj一、基本运动规律a=2(2c2+6c3+12c42+……+n(n-1)cnn-2)(一)多项式运动规律s=c0+c1+c22+c33+……+cnnv=(c1+2c2+3c32+……+ncnn-1)式中,为凸轮的转角(rad);c0,c1,c2,…,为n+1个待定系数。j=3(6c3+24c4+……+n(n-1)(n-2)cnn-3)s=c0+c1v=c1a=0hShv0a1、n=1的运动规律等速运动规律0aa=00sh0v刚性冲击=0,s=0;=,s=h0,,2,2vhshs222224)(4)(2hahvhhs2221221022caccvcccs2,20,0,0hsvs22222442hahvhs0j0vvmax0shamax0a-amax等加速等减速运动规律柔性冲击柔性冲击增加多项式的幂次,可获得性能良好的运动规律2、n=2的运动规律svaj00003222212111)cos()sin()cos(coscccvdtsccadtvctcahsvs,0,0,0)cos(2)sin(2)cos(12222hahvhs柔性冲击(二)余弦加速度规律3222212111)2sin(4)2cos(2)2sin()sin(cccvdtsccadtvctcahss,0,0)2sin(2)2cos(1)2sin(2122hahvhsv0aj00s0(三)正弦加速度规律二、组合运动规律简介运动规律组合应遵循的原则:1、对于中、低速运动的凸轮机构,要求从动件的位移曲线在衔接处相切,以保证速度曲线的连续。2、对于中、高速运动的凸轮机构,则还要求从动件的速度曲线在衔接处相切,以保证加速度曲线的连续。aOABCDEFO梯形加速度运动规律a改进型等速运动规律00aa=0v0sh三、从动件运动规律设计:1、从动件的最大速度vmax要尽量小;2、从动件的最大加速度amax要尽量小;3、从动件的最大跃动度jmax要尽量小。运动规律Vmax(h/)amax(h2/2)冲击特性适用范围等速1.0刚性低速轻载等加速等减速2.04.00柔性中速轻载余弦加速度1.574.93柔性中速中载正弦加速度2.006.28无高速轻载从动件常用基本运动规律特性§3–3盘形凸轮机构基本尺寸的确定一、移动从动件盘形凸轮机构的基本尺寸二、摆动从动件盘形凸轮机构的基本尺寸一、移动从动件盘形凸轮机构的基本尺寸的设计移动从动件盘形凸轮机构的基本尺寸ttOPnnAeSS0v2Crrb1123P13P23压力角ttOPnAeC1n(P13)P23瞬心SSOCOPCACP0tanSerevb2212)/(tan)(/tan1212srvsrvbb1221,vOPvOP即1、偏距e的大小和偏置方位的选择原则brvve1minmax)(21•应有利于减小从动件工作行程时的最大压力角。•为此应使从动件在工作行程中,点C和点P位于凸轮回转中心O的同侧,此时凸轮上C点的线速度指向与从动件工作行程的线速度指向相同。•偏距不宜取得太大,可近似取为:2、凸轮基圆半径的确定加大基圆半径,可减小压力角,有利于传力;不足是:同时加大了机构尺寸。因此,原则如下:222212)][/()][/(estgeddsestgevrb1)若机构受力不大,要求机构紧凑时;取较小的基圆半径,按许用压力角求这时,若从动件运动规律已知,即s=s(φ)已知,代入上式,可求得一系列rb,取最大者为基圆半径mmrrmmrrhmsh3)10~7(75.1根据实际轮廓的最小向径rm确定基圆半径rb,校核压力角根据结构和强度确定基圆半径rsrhrm2)若机构受力较大,对其尺寸又没有严格的限制二、摆动从动件盘形凸轮机构的基本尺寸整理得,1与2同向凸轮的转向1与从动件的转向2相反nO1PKO2rb12Bn0+v2Lanv2O1PKO2rb21BttanL0+POPOPOPO122221llallLO1PLO2PLO2PLO2P)cos(lcosl0PO2LO2PL)(tg1)sin(a)1(ltg0012L)ψψ(tg1)ψψsin(a)1ωω(lαtg0012L-=aLrLab2arccos22202、在运动规律和基本尺寸相同的情况下,1与2异向,会减小摆动从动件盘形凸轮机构的压力角。1、摆动从动件盘形凸轮机构的压力角与从动件的运动规律、摆杆长度、基圆半径及中心距有关。一、图解法设计盘形凸轮机构二、解析法设计盘形凸轮机构§3-4根据预定运动规律设计盘形凸轮轮廓曲线一、盘形凸轮机构的设计——图解法(1)尖顶移动从动件盘形凸轮机构(2)滚子移动从动件盘形凸轮机构(3)尖顶摆动从动件盘形凸轮机构2S1123s1s2hOrb-11s11'1s12s2s23hh3'2'凸轮轮廓曲线设计的基本原理(反转法)2S1123s1s2hOrb-3'3211s2s1h11’2’es1s2偏置尖顶从动件凸轮轮廓曲线设计(反转法)2S1123s1s2h-1111's1Orbes22h3Fvs11已知:S=S(),rb,e,偏置尖顶从动件凸轮轮廓曲线设计(反转法)2S1123s1s2h-1111's1Orbes22h3已知:S=S(),rb,e,,rr理论轮廓实际轮廓Fv偏置滚子从动件凸轮轮廓曲线设计(反转法)SS''911223344556677883B2B5B4B3C0B7B6B8C1C6C4C5C2C3C8C71已知:=(),rb,L(杆长),a(中心距),A0B00OS''SA1A2A3A4A5A9A8A7A6B1C9B9Fv摆动从动件盘形凸轮机构Ψ1二、盘形凸轮机构的设计——解析法(1)尖顶移动从动件盘形凸轮机构(2)尖顶摆动从动件盘形凸轮机构(3)滚子移动从动件盘形凸轮机构(4)平底移动从动件盘形凸轮机构x2SSOB1eSS0rby-BC0CB01111)cos()sin()sin()cos(BBBBBByxyyxx(1)尖顶移动从动件盘形凸轮机构的设计SereSSeyxbBB22101111BBBByxRyx)cos()sin()sin()cos(RcossinsincosxOB1eSS0rby-BC0CB0平面旋转矩阵尖顶移动从动件盘形凸轮机构SSeyxBB0cossinsincoscos)(sinsin)(cos00SSeSSe注意:1)若从动件导路相对于凸轮回转中心的偏置方向与x方向同向,则e0,反之e0。2)若凸轮逆时针方向转动,则0,反之0。)cos()sin(0011LaLyxBBaLrLab2cos2220)cos(cos)sin(sin00LaLayxBB11BBBByxRyx(2)尖顶摆动从动件盘形凸轮机构若凸轮逆时针方向转动,则0,反之0y0B0B1BrbAx-OaL(3)滚子从动件盘形凸轮机构的设计ddyddxdydxtgBBBBsinryycosrxxrBCrBCOnnB0Brb’’’yxrrC’C’’C’BC’’rrrrrm(a)理论轮廓曲线的设计(b)实际轮廓(c)刀具中心轨迹方程砂轮滚子rrrcrc-rr'c钼丝滚子rrrcrr-rc'csinryycosrxxrBCrBC上式中用|rc-rr|代替rr即得刀具中心轨迹方程(d)滚子半径的确定当rrmin时,实际轮廓为一光滑曲线。当rr=min时,实际轮廓将出现尖点,极易磨损,会引起运动失真。rrbminminrrminbmin=min-rr0rr=minminbmin=min-rr=0当rrmin时,实际轮廓将出现交叉现象,会引起运动失真。bminminbmin=min+rr0内凹的轮廓曲线不存在失真。minrrrrminbmin=min-rr022222222232,)(1dxddydxdydddxddydxdyxdyddxdybmin=min-rr3mm,rrmin-3mmrr

1 / 70
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功