应用举例(测高)(6)什么是解直角三角形?由直角三角形中除直角外的已知元素,求未知元素的过程,叫做解直角三角形.如图:RtABC中,C=90,则其余的5个元素之间关系?CABbca1.三边之间的关系a2+b2=c2(勾股定理);2.锐角之间的关系∠A+∠B=90º3.边角之间的关系tanA=absinA=accotA=ba解直角三角形的依据cosA=bcACBabc仰角和俯角铅直线水平线视线视线仰角俯角方向角如图:点A在O的北偏东30°点B在点O的南偏西45°(西南方向)30°45°BOA东西北南在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.例1解在Rt△BDE中,BE=DE×tana=AC×tana=22.7×tan22°≈9.17,所以AB=BE+AE=BE+CD=9.17+1.20≈10.4(米).答:电线杆的高度约为10.4米.如图19.4.4,为了测量电线杆的高度AB,在离电线杆22.7米的C处,用高1.20米的测角仪CD测得电线杆顶端B的仰角a=22°,求电线杆AB的高.(精确到0.1米)图19.4.4在山顶上处D有一铁塔,在塔顶B处测得地面上一点A的俯角α=60o,在塔底D测得点A的俯角β=45o,已知塔高BD=30米,求山高CD。ABCDαβ例2解:在RtΔADC中,∠C=900∵∠CAD=β=450∠CDA=450∴∠CAD=∠CDA∴CD=AC设CD为x米则AC=x米在RtΔABC中∠C=900∵∠CAB=α=600ACBCBACtan∴BC=AC·tan600即x+30=x3∴x-x=303∴x=15+15(米)3答:山高CD为(15+15)米3某人在A处测得大厦的仰角∠BAC为300,沿AC方向行20米至D处,测得仰角∠BDC为450,求此大厦的高度BC.ABDC300450例345°30°OBA200米合作与探究例3:如图,直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和45°,求飞机的高度PO.LUD答案:米)3003100(P合作与探究例2:如图,直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和45°,求飞机的高度PO.45°30°POBA200米C答案:米)2003200(合作与探究变题1:如图,直升飞机在长400米的跨江大桥AB的上方P点处,且A、B、O三点在一条直线上,在大桥的两端测得飞机的仰角分别为30°和45°,求飞机的高度PO.ABO30°45°400米P200米POBA45°30°D答案:米)3100300(合作与探究变题2:如图,直升飞机在高为200米的大楼AB左侧P点处,测得大楼的顶部仰角为45°,测得大楼底部俯角为30°,求飞机与大楼之间的水平距离.1.数形结合思想.方法:把数学问题转化成解直角三角形问题,如果示意图不是直角三角形,可添加适当的辅助线,构造出直角三角形.思想与方法2.方程思想.3.转化(化归)思想.45°30°200米POBD归纳与提高45°30°PA200米CBO45°30°45060°45°20020045°30°βαABOPABOP30°45°450铅垂线水平线视线视线仰角俯角在进行观察或测量时,仰角和俯角从上往下看,视线与水平线的夹角叫做俯角.从下向上看,视线与水平线的夹角叫做仰角;