污泥龄计算

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

德国是世界上环境保护工作开展较好的国家,在污水处理的脱氮除磷方面积累了很多值得借鉴的经验。现将德国排水技术协会(ATV)最新制定的城市污水设计规范A131中关于生物脱氮(硝化和反硝化)的曝气池设计方法介绍给大家,以供参考。A131的应用条件:①进水的COD/BOD5≈2,TKN/BOD5≤0.25;②出水达到废水规范VwV的规定。对于具有硝化和反硝化功能的污水处理过程,其反硝化部分的大小主要取决于:①希望达到的脱氮效果;②曝气池进水中硝酸盐氮NO-3-N和BOD5的比值;③曝气池进水中易降解BOD5占的比例;④泥龄ts;⑤曝气池中的悬浮固体浓度X;⑥污水温度。图1为前置反硝化系统流程。1计算NDN/BOD5和VDN/VTNDN表示需经反硝化去除的氮,它与进水的BOD5之比决定了反硝化区体积VDN占总体积VT的大小。由氮平衡计算NDN/BOD5:NDN=TKNi-Noe-Nme-Ns式中TKNi——进水总凯氏氮,mg/LNoe——出水中有机氮,一般取1~2mg/LNme——出水中无机氮之和,包括氨氮、硝酸盐氮和亚硝酸盐氮,是排放控制值。按德国标准控制在18mg/L以下,则设计时取0.67×18=12mg/LNs——剩余污泥排出的氮,等于进水BOD5的0.05倍,mg/L由此可计算NDN/BOD5之值,然后从表1查得VDN/VT。表1晴天和一般情况下反硝化设计参考值反硝化前置周步VDN/VT反硝化能力,以kgNDN/kgBOD5计,(t=10℃)0.200.700.050.300.100.080.400.120.110.500.140.142泥龄泥龄ts是活性污泥在曝气池中的平均停留时间,即ts=曝气池中的活性污泥量/每天从曝气池系统排出的剩余污泥量tS=(X×VT)/(QS×XR+Q×XE)式中tS——泥龄,dX——曝气池中的活性污泥浓度,即MLSS,kg/m3VT——曝气池总体积,m3QS——每天排出的剩余污泥体积,m3/dXR——剩余污泥浓度,kg/m3Q——设计污水流量,m3/dXE——二沉池出水的悬浮固体浓度,kg/m3根据要求达到的处理程度和污水处理厂的规模,从表2选取应保证的最小泥龄。表2处理程度及处理厂规模和最小泥龄的关系处理程度污水处理厂规模≤2万人口当量≤10万人口当量无硝化的污水处理54有硝化的污水处理(设计温度10℃)108硝化/反硝化的污水处理(设计温度10℃)VDN/VT=0.21210=0.31311=0.41513=0.51816硝化/反硝化和污泥稳定稳定的污水处理25不推荐注12℃时达到稳定硝化需按10℃设计3剩余污泥量污泥比产率Y=YBOD5+YP式中Y——污泥产率,kg干固体/kgBOD5YBOD5——剩余污泥产率,kg干固体/kgBOD5YP——同步沉淀的化学污泥产率(当未投加化学混凝剂除磷时无此项),kg干固体/kgBOD5剩余污泥产率YBOD5与泥龄、进水SS和BOD5的比例、温度等有关,约为0.52~1.22kg干固体/kgBOD5,可从表3中选取。表3YBOD5与泥龄、进水SS和BOD5的比例之关系SSi/(BOD5)i泥龄(d)4681015250.40.740.700.670.640.590.520.60.860.820.790.760.710.640.80.980.940.910.880.830.761.01.101.061.031.000.950.881.21.221.181.151.121.071.004计算曝气池体积首先计算曝气池的污泥负荷N,即N=l/(tS×Y)式中N——曝气池的污泥负荷,kgBOD5/(kg干固体•d)再根据表4选定曝气池中的活性污泥浓度X。表4曝气池中活性污泥浓度的推荐值处理程度活性污泥浓度X(kg/m3)有初沉池无初沉池无硝化2.5-3.53.5-4.5硝化和反硝化2.5-3.53.5-4.5带污泥稳定-4.0-5.0除磷(加混凝剂同步沉淀)3.5-4.54.0-5.0应特别注意,必须校验二沉池能否使曝气池中的活性污泥浓度达到所选取的X值。所以,曝气池的体积为:VT=(BOD5)i×Q/(N×X)VT=VDN+VN5回流比内循环回流比R1=QR1/Q,外循环回流比R2=QR2/Q,总回流比R=R1+R2。在前置反硝化工艺中,硝酸盐氮通过内循环和外循环回流进入反硝化区。只要回流的硝酸盐氮不超过表1中的反硝化能力,则可能达到的最大反硝化程度取决于回流比R。因此,可根据反硝化率EDN计算所需的最小回流比。EDN=NDN/(NDN+Nne)所需的最小回流比R=1/(1-EDN)-1式中EDN——反硝化率Nne——出水硝酸盐氮,mg/L一般在前置反硝化工艺中,回流比取2.0。若希望进一步提高反硝化率,可继续提高回流比。但必须注意,最大回流比为4.0,且回流比较高时存在着将过多的溶解氧带入反硝化区的危险。为了减少循环回流中的溶解氧,可在曝气池末端设置隔离区域,减少该区中的曝气量。前置反硝化工艺中的反硝化区应采用隔墙与好氧硝化区分开,并在反硝化区中设置搅拌装置。回流量还可根据连续监测反硝化区Nne值进行调节。6供氧量生物脱氮工艺中,分解碳化合物(BOD5)的需氧率OVC和氧化氮化合物的需氧率OVN必须分开计算。然后根据饱和溶解氧等的影响,由这两部分之和计算供氧率(氧负荷)OB。①分解碳化合物的需氧率OVC可从表5查得。表5分解碳化合物的需氧率OVckgO2/kgBOD5温度(℃)泥龄(d)468101525100.830.951.051.151.321.55120.871.001.101.201.381.60150.941.081.201.301.461.60181.001.171.301.401.541.60201.051.221.351.451.601.60②氧化氮化合物的需氧率OVN可按下式计算:OVN=(4.6×Nne+1.7×NDN)/BOD5③选择曝气区的溶解氧浓度CX,根据峰值系数fC和fN计算最大小时供氧率(氧负荷)OB:OB=〔Cs/(Cs-Cx)〕/(OVc×fC+OVN×fN)式中Cs——污水中饱和溶解氧浓度,mg/LCx——曝气池中溶解氧浓度,mg/LfC——碳负荷峰值系数,即最大小时需氧率与平均小时需氧率之比fN——氮负荷峰值系数推荐的CX值为:在无硝化的装置中取2mg/L;进行硝化的装置中取2mg/L;进行硝化同步/反硝化的装置中取0.5mg/L。如果无法测得峰值系数,可从表6中查取。由于在污水处理厂最大氮负荷与最大碳负荷并不同时出现,因此选用最大碳负荷和平均氮负荷或最大氮负荷和平均碳负荷进行计算。表6峰值系数各类负荷值系数泥龄(d)468101525fcfN(≤2万人口当量)fN(>10万人口当量)1.31.251.21.21.151.1---2.52.01.5--2.01.81.5-注假定24h中出现2h峰值④根据供氧率(氧负荷)OB和曝气设备的氧利用率计算设计供氧量。如果曝气设备的氧利用率是在清水中测定的,则计算结果必须除以供氧系数α(0.5~1.0)。应特别注意的问题还有,夏季在不具备反硝化功能的污水处理厂进行污水硝化时,OVC值必须增加1/3。另外,最大小时需氧率是根据峰值系数fC和fN、以及日需氧率的1/24计算的,因此若采用间歇反硝化,供氧量应依据曝气间歇时间相应提高。在前置反硝化工艺中,可将供氧和搅拌分开。反硝化区的搅拌强度取决于池容,通常为3~8W/m3。同时,在反硝化区安装曝气装置有利于加强运行灵活性。对前置反硝化系统的测试表明,曝气区起始段的耗氧量为平均耗氧量的2倍,故应合理布置曝气装置,保证整个曝气区内的溶解氧都不低于2mg/L。对于推流式曝气池,应分别在沿池长25%和75%处测量池中的溶解氧。供氧量也可根据连续监测曝气池出水中的NH4+-N值进行调整。1剩余污泥量计算方法在活性污泥工艺中,为维持生物系统的稳定,每天需不断有剩余污泥排出。它们主要由两部分构成,一是由降解有机物BOD所产生的污泥增殖,二是进水中不可降解及惰性悬浮固体的沉积。因此,剩余干污泥量可以用式(1)计算:ΔX=(Y1+Kdθc)Q(BODi-BODo)+fPQ(SSi-SSo)(1)式中ΔX———系统每日产生的剩余污泥量,kgMLSS/d;Y———污泥增殖率,即微生物每代谢1kgBOD所合成的MLVSSkg数;Kd———污泥自身氧化率,d-1;θc———污泥龄(生物固体平均停留时间),d;Y1+Kdθc———污泥净产率系数,又称表观产率(Yobs);Q———污水流量,m3/d;BODi,BODo———进、出水中有机物BOD浓度,kgBOD/m3;fP———不可生物降解和惰性部分占SSi的百分数;SSi,SSo———进、出水中悬浮固体SS浓度,kgSS/m3。德国排水技术协会(ATV)制订的城市污水设计规范中给出了剩余污泥量的计算表达式[1]。此式与式(1)本质相同,只是更加细致,考虑了活性污泥代谢过程中的惰性残余物(约占污泥代谢量的10%左右)及温度修正。综合污泥产率系数YBOD(以BOD计,包含不可降解及惰性SS沉积项)写作:YBOD=06×(1+SSiBODi)-(1-fb)×06×008×θc×FT1+008×θc×FT(2)FT=1702(T-15)(3)式中fb———微生物内源呼吸形成的不可降解部分,取值01;FT———温度修正系数。比较(1),(2)两式,可知在ATV标准中动力学参数Y,Kd分别取值0.6和0.08d-1,进水中不可降解及惰性悬浮固体(fP部分)占总进水SS的60%。由于剩余污泥中挥发性部分所占比例与曝气池中MLVSS与MLSS的比值大体相当,因此剩余干污泥量也可以表示成下式:ΔX=YobsQ(BODi-BODo)f(4)式中f=MLVSSMLSS;其他符号意义同前。式(4)与式(1)是一致的,均需确定Yobs。2Yobs的确定表观产率Yobs=Y1+Kdθc具有明确的物理含义,我国《室外排水设计规范》(GBJ14-87)第6.6.2条明确规定“在20℃,有机物以BOD计时,污泥产率系数Y其常数为0.4~0.8。如处理系统无初次沉淀池,Y值必须通过试验确定。”同款还规定了Kd20℃的常数值0.04~0.075d-1。从中可以看出,Y值变化幅度达100%,Kd的变化幅度达875%。对于不设初沉池的活性污泥系统,常常将已有类似污水处理厂的运行经验,作为设计上的参考。表1是几种典型活性污泥工艺Yobs(或Y,Kd)取值情况。对于运行中的污水处理厂,可通过长期运行工况参数,如θc,F(污泥负荷,kgBOD/(kgMLVSS·d))求得Yobs实际值,或回归出适用于该厂的Y,Kd值。Yobs用θc,F表示为:Yobs=1θcF(5)据实际运行参数并利用式(5)计算得出的北京市方庄污水处理厂(传统活性污泥工艺)和酒仙桥污水处理厂(氧化沟工艺)的污泥净产率系数,见表2。从表2可见,对于传统活性污泥工艺,文献推荐值与实际测定值非常接近;但对于氧化沟,二者有明显差距,其它不设初沉池的活性污泥工艺亦存在着类似的问题。事实上,由于各个污水处理厂的运行条件千差万别,必然会造成Yobs(或Y,Kd)不完全相同,有时差别还很大。3fP和f的取值由式(1)可知,为正确估计和计算活性污泥工艺中的剩余污泥量,合理确定不可降解及惰性部分占总进水SS的比例是关键。大量的实践表明,进入曝气池的悬浮颗粒物质除部分有机物质发生水解而液化外,仍有40%~60%将以剩余污泥的形式排出系统[8]。对一般城市污水而言,由这部分物质所引起的剩余污泥量在排出的总剩余污泥量中占相当的比例,是不能忽略的。进水SS中不可降解及惰性(无机)部分所占的比例,在德国ATV标准中取0.6。根据我国污水处理厂的经验,此值略高,因此我国大部分设计中取值05。根据酒仙桥厂运行参数计算得的fP值为042(见表3)。若系统存在初沉池,经过初次沉淀后的出水,fP值会有所降低,通常为03左右(见表4)。曝气池的混合液中,挥发性悬浮固体(MLVSS)与总悬浮固体(MLSS)的比

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功