17.2勾股定理的逆定理第十七章勾股定理导入新课讲授新课当堂练习课堂小结第2课时勾股定理的逆定理的应用八年级数学下(RJ)教学课件情境引入学习目标1.灵活应用勾股定理及其逆定理解决实际问题.(重点)2.将实际问题转化成用勾股定理的逆定理解决的数学问题.(难点)导入新课1.勾股定理及其逆定理的内容:a2+b2=c2(a,b为直角边,c斜边)Rt△ABC勾股定理:勾股定理的逆定理:a2+b2=c2(a,b为较短边,c为最长边)Rt△ABC,且∠C是直角.2.等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是cm.83.已知△ABC中,BC=41,AC=40,AB=9,则此三角形为三角形,是最大角.直角∠A讲授新课例1如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于Q、R处,且相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?NEPQR12勾股定理的逆定理的应用一解:根据题意,PQ=16×1.5=24,PR=12×1.5=18,QR=30.因为242+182=302,即PQ2+PR2=QR2,所以∠QPR=90°.由“远航”号沿东北方向航行可知,∠1=45°.因此∠2=450,即“海天”号沿西北方向航行.NEPQR12勾股定理及其逆定理在解决航海问题时,理解方位角的含义是前提,画出符合题意的图形,标明已知条件,转化为解决直角三角形问题所需的条件.归纳勾股定理及其逆定理的综合应用二例2已知:如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.连接AC,把四边形分成两个三角形.先用勾股定理求出AC的长度,再利用勾股定理的逆定理判断△ACD是直角三角形.提示ADBC341312ADBC341312解:连接AC.在Rt△ABC中,AC=AB2+BC2=32+42=5在△ACD中,AC2+CD2=52+122=169,AD2=169,所以△ACD是直角三角形,且∠ACD=90°。所以四边形ABCD的面积=SRt△ABC+SRt△ACD=6+30=36.四边形问题对角线是常用的辅助线,它把四边形问题转化成两个三角形的问题.在使用勾股定理的逆定理解决问题时,它与勾股定理是”黄金搭挡”,经常配套使用.归纳如图,有一块地,已知,AD=4m,CD=3m,∠ADC=90°,AB=13m,BC=12m.求这块地的面积.变式训练ABC341312D解:连接AC,∵∠ADC=90°,AD=4,CD=3,∴AC2=AD2+CD2=42+32=25,又∵AC>0,∴AC=5,又∵BC=12,AB=13,∴AC2+BC2=52+122=169,又∵AB2=169,∴AC2+BC2=AB2,∴∠ACB=90°,∴S四边形ABCD=S△ABC-S△ADC=30-6=24(m2).当堂练习1.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.4B.6C.16D.55C2.如图,△ABC的顶点A,B,C,在边长为1的正方形方格的格点上,BD⊥AC于点D,则BD的长为()A.B.C.D.253354455354abcl第1题ABCD第2题C3.医院、公园和超市的平面示意图如图所示,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的北偏东的方向.东医院公园超市北65°4.如图,等边三角形的边长为6,则高AD的长是;这个三角形的面积是.ABCD33935.如图,矩形ABCD中,AB=8,BC=6,将矩形沿AC折叠,点D落在E处,则重叠部分△AFC的面积是多少?FEADCB解:解得AF=254,△AFC的面积是75.4课堂小结勾股定理的逆定理的应用应用航海问题方法认真审题,画出符合题意的图形,熟练运用勾股定理及其逆定理来解决问题.四边形问题