1一.不等式的性质:二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果;2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化;6.利用函数的单调性;7.寻找中间量或放缩法;8.图象法。其中比较法(作差、作商)是最基本的方法。三.重要不等式1.(1)若Rba,,则abba222(2)若Rba,,则222baab(当且仅当ba时取“=”)2.(1)若*,Rba,则abba2(2)若*,Rba,则abba2(当且仅当ba时取“=”)(3)若*,Rba,则22baab(当且仅当ba时取“=”)3.若0x,则12xx(当且仅当1x时取“=”);若0x,则12xx(当且仅当1x时取“=”)若0x,则11122-2xxxxxx即或(当且仅当ba时取“=”)若0ab,则2abba(当且仅当ba时取“=”)若0ab,则22-2abababbababa即或(当且仅当ba时取“=”)4.若Rba,,则2)2(222baba(当且仅当ba时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.5.a3+b3+c3≥3abc(a,b,cR+),a+b+c3≥3abc(当且仅当a=b=c时取等号);6.1n(a1+a2+……+an)≥12nnaaa(aiR+,i=1,2,…,n),当且仅当a1=a2=…=an取等号;变式:a2+b2+c2≥ab+bc+ca;ab≤(a+b2)2(a,bR+);abc≤(a+b+c3)3(a,b,cR+)a≤2aba+b≤ab≤a+b2≤a2+b22≤b.(0a≤b)7.浓度不等式:b-na-nbab+ma+m,abn0,m0;应用一:求最值例1:求下列函数的值域(1)y=3x2+12x2(2)y=x+1x2解题技巧:技巧一:凑项例1:已知54x,求函数14245yxx的最大值。评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。技巧二:凑系数例1.当时,求(82)yxx的最大值。技巧三:分离例3.求2710(1)1xxyxx的值域。技巧四:换元解析二:本题看似无法运用基本不等式,可先换元,令t=x+1,化简原式在分离求最值。22(1)7(1+10544=5ttttytttt)当,即t=时,4259ytt(当t=2即x=1时取“=”号)。技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()afxxx的单调性。例:求函数2254xyx的值域。解:令24(2)xtt,则2254xyx22114(2)4xtttx因10,1ttt,但1tt解得1t不在区间2,,故等号不成立,考虑单调性。因为1ytt在区间1,单调递增,所以在其子区间2,为单调递增函数,故52y。所以,所求函数的值域为5,2。2.已知01x,求函数(1)yxx的最大值.;3.203x,求函数(23)yxx的最大值.条件求最值1.若实数满足2ba,则ba33的最小值是.分析:“和”到“积”是一个缩小的过程,而且ba33定值,因此考虑利用均值定理求最小值,解:ba33和都是正数,ba33≥632332baba当ba33时等号成立,由2ba及ba33得1ba即当1ba时,ba33的最小值是6.变式:若44loglog2xy,求11xy的最小值.并求x,y的值技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。32:已知0,0xy,且191xy,求xy的最小值。技巧七、已知x,y为正实数,且x2+y22=1,求x1+y2的最大值.分析:因条件和结论分别是二次和一次,故采用公式ab≤a2+b22。同时还应化简1+y2中y2前面的系数为12,x1+y2=x2·1+y22=2x·12+y22下面将x,12+y22分别看成两个因式:x·12+y22≤x2+(12+y22)22=x2+y22+122=34即x1+y2=2·x12+y22≤342技巧八:已知a,b为正实数,2b+ab+a=30,求函数y=1ab的最小值.分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。法一:a=30-2bb+1,ab=30-2bb+1·b=-2b2+30bb+1由a>0得,0<b<15令t=b+1,1<t<16,ab=-2t2+34t-31t=-2(t+16t)+34∵t+16t≥2t·16t=8∴ab≤18∴y≥118当且仅当t=4,即b=3,a=6时,等号成立。法二:由已知得:30-ab=a+2b∵a+2b≥22ab∴30-ab≥22ab令u=ab则u2+22u-30≤0,-52≤u≤32∴ab≤32,ab≤18,∴y≥118点评:①本题考查不等式abba2)(Rba,的应用、不等式的解法及运算能力;②如何由已知不等式230abab)(Rba,出发求得ab的范围,关键是寻找到abba与之间的关系,由此想到不等式abba2)(Rba,,这样将已知条件转换为含ab的不等式,进而解得ab的范围.变式:1.已知a0,b0,ab-(a+b)=1,求a+b的最小值。2.若直角三角形周长为1,求它的面积最大值。技巧九、取平方5、已知x,y为正实数,3x+2y=10,求函数W=3x+2y的最值.4解法一:若利用算术平均与平方平均之间的不等关系,a+b2≤a2+b22,本题很简单3x+2y≤2(3x)2+(2y)2=23x+2y=25解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。W>0,W2=3x+2y+23x·2y=10+23x·2y≤10+(3x)2·(2y)2=10+(3x+2y)=20∴W≤20=25应用二:利用基本不等式证明不等式1.已知cba,,为两两不相等的实数,求证:cabcabcba2221)正数a,b,c满足a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc例6:已知a、b、cR,且1abc。求证:1111118abc分析:不等式右边数字8,使我们联想到左边因式分别使用基本不等式可得三个“2”连乘,又1121abcbcaaaa,可由此变形入手。解:a、b、cR,1abc。1121abcbcaaaa。同理121acbb,121abcc。上述三个不等式两边均为正,分别相乘,得1112221118bcacababcabc。当且仅当13abc时取等号。应用三:基本不等式与恒成立问题例:已知0,0xy且191xy,求使不等式xym恒成立的实数m的取值范围。解:令,0,0,xykxy191xy,991.xyxykxky1091yxkkxky10312kk。16k,,16m应用四:均值定理在比较大小中的应用:例:若)2lg(),lg(lg21,lglg,1baRbaQbaPba,则RQP,,的大小关系是.分析:∵1ba∴0lg,0lgba21Q(pbabalglg)lglgQababbaRlg21lg)2lg(∴RQ四.不等式的解法.1.一元一次不等式的解法。2.一元二次不等式的解法3.简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一5个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()fx的符号变化规律,写出不等式的解集。如(1)解不等式2(1)(2)0xx。(答:{|1xx或2}x);(2)不等式2(2)230xxx的解集是____(答:{|3xx或1}x);(3)设函数()fx、()gx的定义域都是R,且()0fx的解集为{|12}xx,()0gx的解集为,则不等式()()0fxgx的解集为______(答:(,1)[2,));(4)要使满足关于x的不等式0922axx(解集非空)的每一个x的值至少满足不等式08603422xxxx和中的一个,则实数a的取值范围是______.(答:81[7,)8)4.分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。如(1)解不等式25123xxx(答:(1,1)(2,3));(2)关于x的不等式0bax的解集为),1(,则关于x的不等式02xbax的解集为____________(答:),2()1,().5.指数和对数不等式。6.绝对值不等式的解法:(1)含绝对值的不等式|x|<a与|x|>a的解集(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法①|ax+b|≤c-c≤ax+b≤c;②|ax+b|≥cax+b≥c或ax+b≤-c.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想。方法四:两边平方。例1:解下列不等式:2(1).2xxx1(2).-32x【解析】:(1)解法一(公式法)6原不等式等价于x2-2xx或x2-2x-x解得x3或x0或0x1∴原不等式的解集为﹛x︱x0或0x1或x3﹜解法2(数形结合法)作出示意图,易观察原不等式的解集为﹛x︱x0或0x1或x3﹜第(1)题图第(2)题图【解析】:此题若直接求解分式不等式组,略显复杂,且容易解答错误;若能结合反比例函数图象,则解集为1|2xx1或x-3,结果一目了然。例2:解不等式:1||xx【解析】作出函数f(x)=|x|和函数g(x)=1x的图象,易知解集为01(-,)[,+)例3:.|1||1|32xx解不等式 。【解法1】令2(1)()|1||1|2(11)2(1)xgxxxxxx令()32hx,分别作出函数g(x)和h(x)的图象,知原不等式的解集为3[,)4|1||1|32xx【解法2】原不等式等价于令3()|1|,()|1|2gxxhxx7分别作出函数g(x)和h(x)的图象,易求出g(x)和h(x)的图象的交点坐标为37(,)44所以不等式|1||1|32xx的解集为3[,)4【解法3】由|1||1|32xx的几何意义可设F1(-1,0),F2(1,0),M(x,y),若1232MFM