双曲线的定义及其标准方程

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

双曲线及其标准方程1.椭圆的定义和等于常数2a(2a|F1F2|0)的点的轨迹.平面内与两定点F1、F2的距离的1F2F0,c0,cXYOyxM,2.引入问题:差等于常数的点的轨迹是什么呢?平面内与两定点F1、F2的距离的复习|MF1|+|MF2|=2a(2a|F1F2|0)①如图(A),|MF1|-|MF2|=常数②如图(B),上面两条合起来叫做双曲线由①②可得:||MF1|-|MF2||=常数(差的绝对值)|MF2|-|MF1|=常数双曲线在生活中☆.☆①两个定点F1、F2——双曲线的焦点;②|F1F2|=2c——焦距.(1)2a|F1F2|;oF2F1M平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于︱F1F2︱)的点的轨迹叫做双曲线.(2)2a0;双曲线定义思考:(1)若2a=|F1F2|,则轨迹是?(2)若2a|F1F2|,则轨迹是?说明(3)若2a=0,则轨迹是?||MF1|-|MF2||=2a(1)两条射线(2)不表示任何轨迹(3)线段F1F2的垂直平分线F2F1MxOy求曲线方程的步骤:双曲线的标准方程1.建系.以F1,F2所在的直线为x轴,线段F1F2的中点为原点建立直角坐标系2.设点.设M(x,y),则F1(-c,0),F2(c,0)3.列式|MF1|-|MF2|=±2a4.化简aycxycx2)()(2222即aycxycx2)()(2222222222)(2)(ycxaycx222)(ycxaacx)()(22222222acayaxac222bac)0,0(12222babyax此即为焦点在x轴上的双曲线的标准方程12222byax12222bxayF2F1MxOyOMF2F1xy)00(ba,若建系时,焦点在y轴上呢?看前的系数,哪一个为正,则在哪一个轴上22,yx2、双曲线的标准方程与椭圆的标准方程有何区别与联系?1、如何判断双曲线的焦点在哪个轴上?问题定义方程焦点a.b.c的关系F(±c,0)F(±c,0)a0,b0,但a不一定大于b,c2=a2+b2ab0,a2=b2+c2双曲线与椭圆之间的区别与联系||MF1|-|MF2||=2a|MF1|+|MF2|=2a椭圆双曲线F(0,±c)F(0,±c)22221(0)xyabab22221(0)yxabab22221(0,0)xyabab22221(0,0)yxabab解:∴126PFPF∵焦点为12(5,0),(5,0)FF∴可设所求方程为:22221xyab(a0,b0).∵2a=6,2c=10,∴a=3,c=5.所以点P的轨迹方程为221916xy.∵1210FF6,由双曲线的定义可知,点P的轨迹是一条双曲线,例1已知两定点1(5,0)F,2(5,0)F,动点P满足126PFPF,求动点P的轨迹方程.变式训练1:已知两定点1(5,0)F,2(5,0)F,动点P满足126PFPF,求动点P的轨迹方程.解:∴126PFPF∵焦点为12(5,0),(5,0)FF∴可设双曲线方程为:22221xyab(a0,b0).∵2a=6,2c=10,∴a=3,c=5.∴b2=52-32=16.所以点P的轨迹方程为221916xy(3)≥x.∵1210FF6,由双曲线的定义可知,点P的轨迹是双曲线的一支课本例2(右支),使A、B两点在x轴上,并且点O与线段AB的中点重合解:由声速及在A地听到炮弹爆炸声比在B地晚2s,可知A地与爆炸点的距离比B地与爆炸点的距离远680m.因为|AB|680m,所以爆炸点的轨迹是以A、B为焦点的双曲线在靠近B处的一支上.例3.(课本第54页例)已知A,B两地相距800m,在A地听到炮弹爆炸声比在B地晚2s,且声速为340m/s,求炮弹爆炸点的轨迹方程.如图所示,建立直角坐标系xOy,设爆炸点P的坐标为(x,y),则3402680PAPB即2a=680,a=340800AB8006800,0PAPBx1(0)11560044400xyx222800,400,ccxyoPBA因此炮弹爆炸点的轨迹方程为44400bca222思考1:若在A,B两地同时听到炮弹爆炸声,则炮弹爆炸点的轨迹是什么?思考2:根据两个不同的观测点测得同一炮弹爆炸声的时间差,可以确定爆炸点在某条曲线上,但不能确定爆炸点的准确位置.而现实生活中为了安全,我们最关心的是炮弹爆炸点的准确位置,怎样才能确定爆炸点的准确位置呢?答:爆炸点的轨迹是线段AB的垂直平分线.答:再增设一个观测点C,利用B、C(或A、C)两处测得的爆炸声的时间差,可以求出另一个双曲线的方程,解这两个方程组成的方程组,就能确定爆炸点的准确位置.这是双曲线的一个重要应用.例2:如果方程表示双曲线,求m的取值范围.22121xymm解:方程可以表示哪些曲线?_____________.22121xymm思考:21mm得或(2)(1)0mm由∴m的取值范围为(,2)(1,)******小结******感谢您的聆听!THANKSFORYOURKINDATTENTION!LOVELL

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功