2020年高考二轮复习数学(文)通用版:专题检测(十六)-概-率

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

专题检测(十六)概率A组——“6+3+3”考点落实练一、选择题1.(2018·全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3B.0.4C.0.6D.0.7解析:选B由题意可知不用现金支付的概率为1-0.45-0.15=0.4.故选B.2.(2019届高三·湖北五校联考)已知定义在区间[-3,3]上的函数f(x)=2x+m满足f(2)=6,在[-3,3]上任取一个实数x,则使得f(x)的值不小于4的概率为()A.16B.13C.12D.23解析:选B∵f(2)=6,∴22+m=6,解得m=2.由f(x)≥4,得2x+2≥4,即x≥1,而x∈[-3,3],故根据几何概型的概率计算公式,得f(x)的值不小于4的概率P=26=13.故选B.3.(2019届高三·武汉部分学校调研)标有数字1,2,3,4,5的卡片各1张,从这5张卡片中随机抽取1张,不放回地再随机抽取1张,则抽取的第1张卡片上的数大于第2张卡片上的数的概率为()A.12B.15C.35D.25解析:选A5张卡片上分别写有数字1,2,3,4,5,从这5张卡片中随机抽取2张,基本事件的总数n=5×4=20,抽得的第1张卡片上的数大于第2张卡片上的数的情况有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4).共10种.故抽取的第1张卡片上的数大于第2张卡片上的数的概率P=1020=12,故选A.4.(2018·洛阳第一次统考)在区间(0,2)内随机取一个实数a,则满足2x-y≥0,y≥0,x-a≤0的点(x,y)构成区域的面积大于1的概率是()A.18B.14C.12D.34解析:选C作出约束条件2x-y≥0,y≥0,x-a≤0表示的平面区域如图中阴影部分所示,则阴影部分的面积S=12×a×2a=a21,∴1a2,根据几何概型的概率计算公式得所求概率为2-12-0=12,故选C.5.某同学先后投掷一枚质地均匀的骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xOy中,以(x,y)为坐标的点落在直线2x-y=1上的概率为()A.112B.19C.536D.16解析:选A先后投掷两次骰子的结果共有6×6=36种.以(x,y)为坐标的点落在直线2x-y=1上的结果有(1,1),(2,3),(3,5),共3种,故所求概率为336=112.6.(2019届高三·重庆六校联考)《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆径几何.”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步.”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A.3π10B.3π20C.1-3π10D.1-3π20解析:选D如图,直角三角形的斜边长为82+152=17,设其内切圆的半径为r,则8-r+15-r=17,解得r=3,∴内切圆的面积为πr2=9π,∴豆子落在内切圆外的概率P=1-9π12×8×15=1-3π20.二、填空题7.(2018·石家庄质量检测)口袋中有形状和大小完全相同的五个球,编号分别为1,2,3,4,5,若从中一次随机摸出两个球,则摸出的两个球的编号之和大于6的概率为________.解析:一次摸出两个球,有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个可能结果,其中两个球编号之和大于6的有(2,5),(3,4),(3,5),(4,5),共4个可能结果,所以所求概率为410=25.答案:258.已知实数x,y满足|x|≤3,|y|≤2,则任取其中的一对实数x,y,使得x2+y2≤4的概率为________.解析:如图,在平面直角坐标系xOy中,满足|x|≤3,|y|≤2的点在矩形ABCD内(包括边界),使得x2+y2≤4的点在图中圆O内(包括边界).由题意知,S矩形ABCD=4×6=24,S圆O=4π,故任取其中的一对实数x,y,使得x2+y2≤4的概率P=S圆OS矩形ABCD=4π24=π6.答案:π69.从正五边形ABCDE的5个顶点中随机选择3个顶点,则以它们作为顶点的三角形是锐角三角形的概率是________.解析:从正五边形ABCDE的5个顶点中随机选择3个顶点,基本事件总数为10,即ABC,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE,以它们作为顶点的三角形是锐角三角形的种数为5,即△ABD,△ACD,△ACE,△BCE,△BDE,所以以它们作为顶点的三角形是锐角三角形的概率P=510=12.答案:12三、解答题10.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,得到数据分组区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]的人数分别为2,3,11,14,11,9.(1)估计该企业的职工对该部门评分不低于80分的概率;(2)从评分在[40,60)的受访职工中,随机抽取2人,求这2人评分都在[40,50)的概率.解:(1)∵50名受访职工评分不低于80分的频率为11+950=0.4.∴该企业职工对该部门评分不低于80分的概率估计值为0.4.(2)受访职工评分在[50,60)的有3人,分别记为A1,A2,A3.受访职工评分在[40,50)的有2人,分别记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,分别是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2}.又所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求概率P=110.11.(2018·重庆质量调研)30名学生参加某大学的自主招生面试,面试分数与学生序号之间的统计图如下:(1)下表是根据统计图中的数据得到的频率分布表.求出a,b的值,并估计这些学生面试分数的平均值(同一组中的数据用该组区间的中点值作代表).面试分数[0,100)[100,200)[200,300)[300,400]人数A1041频率B13215130(2)该大学的某部门从1~5号学生中随机选择两人进行访谈,求选择的两人的面试分数均在100分以下的概率.解:(1)面试分数在[0,100)内的学生共有30-10-4-1=15名,故a=15,b=1530=12,估计这些学生面试分数的平均值为50×12+150×13+250×215+350×130=120分.(2)从1~5号学生中任选两人的选择方法有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种,观察题图易知1号,4号,5号学生的面试分数在100分以下,故选择的两人的面试分数均在100分以下的选择方法有(1,4),(1,5),(4,5),共3种,故选择的两人的面试分数均在100分以下的概率为310.12.已知二次函数f(x)=ax2-4bx+2.(1)任取a∈{1,2,3},b∈{-1,1,2,3,4},记“f(x)在区间[1,+∞)上是增函数”为事件A,求A发生的概率.(2)任取(a,b)∈{(a,b)|a+4b-6≤0,a0,b0},记“关于x的方程f(x)=0有一个大于1的根和一个小于1的根”为事件B,求B发生的概率.解:(1)因为a有3种取法,b有5种取法,则对应的函数有3×5=15个.因为函数f(x)的图象关于直线x=2ba对称,若事件A发生,则a0且2ba≤1.数对(a,b)的取值为(1,-1),(2,-1),(2,1),(3,-1),(3,1)共5种.所以P(A)=515=13.(2)集合{(a,b)|a+4b-6≤0,a0,b0}对应的平面区域为Rt△AOB,如图,其中点A(6,0),B0,32,则△AOB的面积为12×32×6=92.若事件B发生,则f(1)0,即a-4b+20.所以事件B对应的平面区域为△BCD.由a+4b-6=0,a-4b+2=0,得交点坐标为D(2,1).又C0,12,则△BCD的面积为12×32-12×2=1.所以P(B)=S△BCDS△AOB=29.B组——大题专攻补短练1.(2018·洛阳第一次统考)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到了不同程度的污损,如图.(1)求分数在[50,60)之间的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)对应的矩形的高;(3)若要从分数在[80,100]之间的试卷中任取两份分析学生的失分情况,求在抽取的试卷中,至少有一份分数在[90,100]之间的概率.解:(1)分数在[50,60)之间的频率为0.008×10=0.08,由茎叶图知,分数在[50,60)之间的频数为2,所以全班人数为20.08=25.(2)分数在[80,90)之间的频数为25-22=3,所以频率分布直方图中[80,90)对应的矩形的高为325÷10=0.012.(3)将[80,90)之间的3个分数分别编号为a1,a2,a3,[90,100]之间的2个分数分别编号为b1,b2,在[80,100]之间的试卷中任取两份的基本事件为(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2),共10个,其中,至少有一份试卷的分数在[90,100]之间的基本事件有7个,故至少有一份试卷的分数在[90,100]之间的概率是P=710=0.7.2.(2019届高三·安徽知名示范高中联考)《中国诗词大会》是央视推出的一档以“赏中华诗词,寻文化基因,品生活之美”为宗旨的大型文化类竞赛节目,邀请全国各个年龄段、各个领域的诗词爱好者共同参与诗词知识比拼.“百人团”由一百多位来自全国各地的选手组成,成员上至古稀老人,下至垂髫小儿,人数按照年龄分组统计如下表:年龄/岁[7,20)[20,40)[40,80]频数185436(1)用分层抽样的方法从“百人团”中抽取6人参加挑战,求从这三个不同年龄组中分别抽取的挑战者的人数;(2)从(1)中抽出的6人中任选2人参加一对一的对抗比赛,求这2人来自同一年龄组的概率.解:(1)因为样本容量与总体个数的比是6108=118,所以从年龄在[7,20)中抽取的人数为118×18=1,从年龄在[20,40)中抽取的人数为118×54=3,从年龄在[40,80]中抽取的人数为118×36=2,所以从年龄在[7,20),[20,40),[40,80]中抽取的挑战者的人数分别为1,3,2.(2)设从[7,20)中抽取的1人为a,从[20,40)中抽取的3人分别为b,c,d,从[40,80]中抽取的2人为e,f.从这6人中任取2人构成的所有基本事件为(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f),共15个.每人被抽到的机会均等,因此这些基本事件的出现是等可能的,记事件A为“2人来自同一年龄组”,包含(b,c),(b,d),(c,d),(e,f),共4个基本事件,则P(A)=415,故2人来自同一年龄组的概率为415.3.“mobike”“ofo”等共享单车为很多市民解决了最后一公里的出行难题.然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如下表:年龄[15,20)[20,25)[25

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功