1/7哈尔滨工业大学2004/2005学年秋季学期工科数学分析期末考试试卷(答案)试卷卷(A)考试形式(开、闭卷):闭答题时间:150(分钟)本卷面成绩占课程成绩70%题号一二三四五六七八卷面总分平时成绩课程总成绩分数一.选择题(每题2分,共10分)1.下列叙述中不正确者为(D)(A)如果数列nx收敛,那么数列nx一定有界。(B)如果aunnlim,则一定有aunnlim。(C)f(x)在点0x处可导的充要条件是f(x)在点0x处可微。(D)如果函数f(x)y在点0x处导数为0,则必在该点处取得极值。2.设在[0,1]上0)x(f''则下列不等式正确者为(B)(A))0(f)1(f)0(f)1(f''(B))0(f)0(f)1(f)1(f''(C))0(f)1(f)0(f)1(f''(D))0(f)1(f)0(f)1(f''3.若f(x)在ba,上可积,则下列叙述中错误者为(D)(A)dt)t(fxa连续(B))x(f在ba,上可积(C)f(x)在ba,上由界(D)f(x)在ba,上连续得分姓名:班级:学号:第1页(共7页)2/74.若sinF(x)dy])tdtsinsin[(xay03,则)x(F'(D)(A)dy])tdtsinsin[(cosxay03(B)cosxx3sin)tdtsinsin(dy])tdtsinsin[(cos2y03xay03(C)y03xay03)xdxsinsin(dy])tdtsinsin[(cos(D)y03xay03)tdtsinsin(dy])tdtsinsin[(cos5.)x1e(x1nlim(D)(A)e(B)2e(C)3e(D)4e二.填空题(每题2分,共10分)1.)0x(x11ynnlim的间断点为:1x,其类型为:第一类间断点。2.23x)(1xy的全部渐近线方程为:2-xy1,x。3.摆线2t)cost1(ay)sintt(ax在处的切线方程为:0a)4(21yx。4.2n1n)!n(lim=:1。5.设f(x)在,1上可导,23e)1e(f,0f(1)2xx',则f(x)=:35x3xx23得分遵守考试纪律注意行为规范第2页(共7页)3/7三.计算下列各题:(每小题4分,本题满分20分)1.若xy2exy,求?yx'解:2xylnxlny,2x'x'xyxyyy2则)2xy(x)yx(yyx'2.)sintty2tcosx,?yxx''求解:2t4sin2tsin21cost1xyyt't'x',2t4cos2tsin2112t2cosyxx''3.dx1xxarctan解:sectdtantt2tdtsec2tantsecttdx1xxarctan2ttanxttanx2=ctantsect2ln-sect2tsectdt2-2tsecttdsect2=c)x1x(2ln1xx2arctan4.dxeyx11x解:dxy)e-(xdxx)e-(ydxeyx1yxy1x11xx1yxy1dey)-(xdex)-(ydxey)e-(xdxex)e-(y1yx1xy1-x1xyyyeeyy)1(e2]ey)e-(x[]ex)e-(y[y1xx1xx得分第3页(共7页)4/75.已知dttecxcxct2xx)(lim,求?c解:tcctcdetdtteexcxccxcx222xxxx21)11()(limlim=2c2t2te)412c(e[te21ccdt,所以2c2ce)412(ec。故25c四.解答下列各题:(每小题5分,本题满分10分)1.已知数列nx,Nn),x2(xxnn1n,.1a0,ax1且求证:nx收敛,并且?xnnlim证明:1)证nx有界因为)a2(ax2,所以1x02。假设1)x2(xx01-n1-nn,则1x01n。故nx有界。2)证nx单调因为0)x1(xx)x2(xxxnnnnnn1n,故nx为单调上升数列。由1)和2)知道nx收敛。设Annxlim,由)x2(xxnn1n,所以有)A2(AA解得1,0AA。而0xn且为单调递增数列,所以0A。故1xnnlim。得分第4页(共7页)5/72.设20t,曲线sinxy与三条直线0,2,ytxtx所围平面部分绕x轴旋转成的旋转体的体积为ttV),(取何值时,)(tV最大?解:xdxxdxxdxtVtttt0220222sinsinsin)(,)1cos22)(1cos22(sin)(2'ttttV由0)('tV得,42arccost。当242arccost时,0)('tV故当42arccost时,)(tV达到极大值,且为最大值。五:证明下列各题:(1,2题各4分,3,4题各6分,本题满分20分)1.证明方程0,0,sinbabxax至少有一个不超过ba的正根。证明:设bxaxxfsin)(,显然它在ba,0上连续。0)]sin(1[)sin()(baabbaababaf(i)若0)(baf,则ba即为满足条件的根。(ii)若0)(baf,则0)(baf。而0)0(bf,由零点定理知存在),0(ba,使得0)(f。即为满足条件的根。得分第5页(共7页)6/72.设函数]1,0[Cf且1)(310duuf,试证:2)(:]1,0[f证明:由1)(310duuf知道31)(10duuf,所以0))((102duuuf。因为]1,0[)(2Cuuf,故由积分中值定理知:]1,0[,使得0)01()())((2102fduuuf,即2)(:]1,0[f。3.设)(xf在区间],[ba上有二阶导数。0)()(''bfaf,证明:在区间),(ba内至少存在一点,使2'')()()(4)(abafbff证明:将)(xf在ax与bx处展成一阶泰勒公式21''')(2)())(()()(axfaxafafxf(1)22''')(2)())(()()(bxfbxbfbfxf(2)令2bax,注意到0)()(''bfaf,(1),(2)有4)(2)()()2(21''abfafbaf(3)4)(2)()()2(22''abfbfbaf(4)(4)-(3)得:))()((8)()()(02''1''2ffabafbf所以:))()((8)()()(8)()()(2''1''22''1''2ffabffabafbf第6页(共7页)7/7取)(])(,)(max[''2''1''fff,即有2'')()()(4)(abafbff。4.设)(xf在区间]1,0[上连续,且dxxxfdxxf1010)()(证明:存在一个)1,0(使得0)(0dxxf证明:令dttftxxFx0)()()(,显然)(xF在]1,0[上连续,在)1,0(内可导,又0)0(F,,0)()()()1()1(101010dtttfdttfdttftF即)1()0(FF。在由罗尔定理知,存在)1,0(使得0)('F,即xxxxxdtttfdttfxdttftxF00'0')()())()(()(=0)()()()(00dttfxxfxxfdttfxx第7页(共7页)