第1页共7页中国矿业大学理学院2004级课程考试试卷2005.01.19.一、叙述题(每题5分共20分)1.叙述函数)(xf在区间I上有界、无界的定义,以及函数)(xf在区间I上的上确界和下确界的定义。(答案略,见教材)2.叙述极限)(limxfax存在的Cauchy准则,再据此叙述)(limxfax不存在的充要条件。(答案略,见教材)3.叙述)(xf在区间I上一致连续和不一致连续的定义。(答案略,见教材)4.用“”语言叙述函数f在区间],[ba上Riemann可积的定义。(答案略,见教材)二、计算题(每题8分共40分)1.设)0,0(limaaaannn,求极限nnnalim【解】取0满足a00,由aannlim知,NN,当Nn时,有00aaan从而nnnnaaa00上式两边取极限并利用结论1limnnc(0c为常数)和迫敛性得1limnnna2.设33)(2xbaxxxxf,求ba,使f在点3x可导。【解】首先要在点3x连续知,93ba(*)下面可用导数极限定理或定义来做。用导数极限定理来做:332)(xaxxxf,6)03(f,af)03(从而6)03()3(ff,aff)03()3(第2页共7页要可导即要求)3()3(ff得6a再由(*)式得9b用定义来做:633lim3)3()(lim)3(2233xxxfxffxx393)3(lim33lim3)3()(lim)3(3233xbaxaxbaxxfxffxxxaax3(*)lim式由(也可用洛必达法则求导得)其它同上3.求)]11ln([lim2nnnIn【解】21)1ln(lim)]11ln([lim2012ttttxxxItxx上一步用L’Hospital法则和Taylor展开都可以做用L’Hospital法则:21)1(21lim2111lim)1ln(lim0020ttttttttt用Taylor展开:21))(21(lim)1ln(lim222020ttotttttttt4.求11)1ln(lim4sin002xdttIxx【解】(下面用到等价无穷小和L’Hospital法则等)4sin0021)1ln(lim2xdttIxx1sinlim)sin1ln(lim2cossin2)sin1ln(lim220220320xxxxxxxxxxx第3页共7页5.求02cos1sindxxxxI【解】020202)(cos1)sin()(cos1sincos1sindttttdxxxxtxdxxxxIIdtttdttttdttt020202cos1sincos1sincos1sin从而4)44(2cosarctan2cos1cos2cos1sin2200202tttddtttI三、证明题(每题10分共40分)1.设函数f在点0x存在左右导数,试证f在点0x连续。【证】由)()()(lim0000xfxxxfxfxx存在知,))(1())(()()(0000xxoxxxfxfxf从而)()(lim00xfxfxx,即)(xf在0x左连续。同理由)(0xf存在,知)(xf在0x右连续。综上,)(xf在0x处连续[注]以上也可用增量公式写2.证明:当0x时,11)1ln(10xx【证】对)1ln()(xxf在],0[x用L-中值定理1)0)(()1ln()0()(xxfxfxf,),0(xxxxx11)1ln(1,11)1ln(10xxx3.设f为],[ba上的非负可积函数,在],[0bax连续且0)(0xf,证明:0)(badxxf。第4页共7页【证】不妨假设bxa0。由连续函数的性质,存在),(),(0baxU,当),(0xUx时,有0)(21)(00xfxf从而bxxxxabadxxfdxxfdxxfdxxf0000)()()()(00)(xxdxxf0)()(210000xfdxxfxx4.设f是],[ba上的连续增函数,axafbxadttfaxxFxa)()(1)(试证明F也是],[ba上的增函数。【证】当],(bax时,由0)()()())(())(()()())(()(22axfxfaxaxfaxxfaxdttfaxxfxFxa(以上用到了积分中值定理)知F在],(ba上增,又)(1)(lim)(limafxfxFaxax(这里用了洛必达法则)知)(xF在点ax连续,从而F在],[ba上增。=============================================================================以下是备用题◆求210tanlimxxxxI【解】22)tanln(1tanxxxxexx而第5页共7页)(31~))(311ln()(31lntanln222233xoxxoxxxoxxxx31)(31limtanlnlim222020xxoxxxxxx31eI◆求dxexx【解】当0x时,1Cexedxxedxexxxxx当0x时,2Cexedxxedxexxxxx由dxexx的连续性可得,2112121CCCC,这样002xCexexCexedxexxxxxx(C为任意常数)◆求])1(cos2coscos1[1lim)(nnxnnxnxnxf(Rx)【解】当0x时,显然原式1当0x时,原式xxxtxxtdtxninnisinsin1cos1cos1lim10101n综上010sin)(xxxxxf◆设)(xf在],0[a上可导,且naxanafdxxfen10)1()()(证明,),0(a使0)()(ff。【证】令)()(xfexFax,则)()(afaF。由积分中值定理,存在n101使第6页共7页)()(1101fedxxfenanax再由条件知)()(1afF。对)(xF在],[1a上用Rolle中值定理得:),0(),(1aa使:0)()(0)()()(ffffeFa◆设)(xf是区间I上的凸函数,证明f在I的任一内点(非区间端点)上连续。【证】(I)首先证明对任意固定的Ix0弦斜率函数00)()()(xxxfxfxk是增函数。这一点由凸函数的充要条件:对I上任意三点321xxx有232313131212)()()()()()(xxxfxfxxxfxfxxxfxf易知。(II)其次证明对I的任一内点0x,)(0xf和)(0xf都存在。当0xx时,由)(xk是增函数且020200)()()()()(xxxfxfxxxfxfxk有界(这里任取02xx固定),由单调有界定理,得)()(lim00xfxkxx存在。同理)(0xf存在。(III)最后证明f在I的任一内点上连续。由)()()(lim0000xfxxxfxfxx存在,即))(1())(()()(0000xxoxxxfxfxf,即得)(xf在0x左连续。同理由)(0xf存在,得)(xf在0x右连续。因此)(xf在0x处连续◆设f在点a二阶可导,证明20)()(2)(lim)(hhafafhafafh第7页共7页【证】不hhafhafhhafafhafhh2)()(lim)()(2)(lim00020)())()((21])()()()([lim210afafafhafhafhafhafh【或】把)(haf和)(hafTaylor展开然后再相加◆设f在)(0xU内连续,在)(00xU内可导,如果)(lim)0(00xfxfxx存在,则)(0xf必存在且)0()(00xfxf