复习回顾还记得前面学的完全平方公式吗?2222bababa2222bababa2222bababa__________44xx计算:__________72b____________99mm1682xx49142bb81182mm新课引入试计算:9992+1998+12×999×1=(999+1)2=106此处运用了什么公式?完全平方公式逆用就像平方差公式一样,完全平方公式也可以逆用,从而进行一些简便计算与因式分解。即:2222bababa2222bababa这个公式可以用文字表述为:两个数的平方和加上(或减去)这两个数的积的两倍,等于这两个数的和(或差)的平方。牛刀小试(对下列各式因式分解):①a2+6a+9=_________________②n2–10n+25=_______________③4t2–8t+4=_________________④4x2–12xy+9y2=_____________(a+3)2(n–5)24(t–1)2(2x–3y)2①16x2+24x+9②–4x2+4xy–y2③x2+2x–1④4x2–8xy+4y2⑤1–2a2+a4⑥(p+q)2–12(p+q)+36形如a2±2ab+b2的式子叫做完全平方式。完全平方式一定可以利用完全平方公式因式分解完全平方式的特点:1、必须是三项式(或可以看成三项的)2、有两个同号的平方项3、有一个乘积项(等于平方项底数的±2倍)简记口诀:首平方,尾平方,首尾两倍在中央。222baba①16x2+24x+9②–4x2+4xy–y2④4x2–8xy+4y2=(4x+3)2=–(4x2–4xy+y2)=–(2x–y)2=4(x2–2xy+y2)=4(x–y)2⑤–2a2+⑥(p+q)2–12(p+q)+36a41=(a2–1)2=(a+1)2(a–1)2=[(a+1)(a–1)]2=(p+q–6)2XXX做一做用完全平方公式进行因式分解。sttsxxaa2913281182222③②①4202544122222224xxabccbanmnm⑥⑤④做一做用恰当的方法进行因式分解。备选方法:提公因式法平方差公式完全平方公式996441122222222222xxxyxyxnmnmaa④③②①提高训练(一)222222441482yxyxyxyxyxabba③②①因式分解:④给4x2+1加上一个单项式,使它成为一个完全平方式,这个单项式可以是________。提高训练(二)。,则,、已知___04412cbacabba。,化简、若414110222xxxxx的形状并说明理由。判断△,且满足的三边,是△、、、已知ABCcabcbaABCcba0223222的最小值。、求多项式2008422122babaP提高训练(三)。的最小值为则代数式,,、已知___102222yzxzxyzyxyzayx。则,、已知___22221213222bcacabcbacbacba