第1页(共31页)2016年河南省信阳市新县中考数学模拟试卷(八)一、选择题(每小题3分,共24分)1.2的相反数是()A.2B.﹣2C.D.2.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×1012元B.8.45×1011元C.8.45×1012元D.84.5×1010元3.如图,直线BD∥EF,AE与BD交于点C,若∠ABC=30°,∠BAC=75°,则∠CEF的大小为()A.60°B.75°C.90°D.105°4.已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根为()A.2B.3C.4D.85.有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的()A.平均数B.中位数C.众数D.方差6.如图所示为某几何体的示意图,则该几何体的主视图应为()A.B.C.D.7.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O第2页(共31页)交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°8.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)二、填空题(每小题3分,共21分)9.25的算术平方根是.10.如图,AB∥CD,∠ABE=60°,∠F=50°,则∠E的度数为度.11.若不等式组的解集为3≤x≤4,则不等式ax+b<0的解集为.12.若根式有意义,则双曲线y=与抛物线y=x2+2x+2﹣2k的交点在第象限.13.如图,有四张卡片(形状、大小和质地都相同),正面分别写有字母A、B、C、D和一个不同的算式,将这四张卡片背面向上洗匀,从中随机抽取两张卡片,第3页(共31页)这两张卡片上的算式只有一个正确的概率是.14.如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为.15.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,F是BC的中点.若动点E以2cm/s的速度从A点出发,沿着A→B→A的方向运动,设运动时间为t(s)(0≤t≤3),连接EF,当t为s时,△BEF是直角三角形.三、解答题(本大题共8小题,满分75分)16.先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.17.我市民营经济持续发展,2013年城镇民营企业就业人数突破20万.为了解城镇民营企业员工每月的收入状况,统计局对全市城镇民营企业员工2013年月平均收入随机抽样调查,将抽样的数据按“2000元以内”、“2000~4000元”、“4000~6000元”和“6000元以上”分为四组,进行整理,分别用A,B,C,D表示,得到下面两幅不完整的统计图.第4页(共31页)由图中所给出的信息解答下列问题:(1)本次抽样调查的员工有人,在扇形统计图中x的值为,表示“月平均收入在2000元以内”的部分所对应扇形的圆心角的度数是;(2)将不完整的条形统计图补充完整,并估计我市2013年城镇民营企业20万员工中,每月的收入在“2000~4000元”的约多少人?(3)统计局根据抽样数据计算得到,2013年我市城镇民营企业员工月平均收入为4872元,请你结合上述统计的数据,谈一谈用平均数反映月收入情况是否合理?18.已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=°和∠AEB=°时,四边形ACED是正方形?请说明理由.19.天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°,AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).第5页(共31页)20.如图,直线y=kx+k(k≠0)与双曲线交于C、D两点,与x轴交于点A.(1)求n的取值范围和点A的坐标;(2)过点C作CB⊥y轴,垂足为B,若S△ABC=4,求双曲线的解析式;(3)在(1)(2)的条件下,若AB=,求点C和点D的坐标,并根据图象直接写出反比例函数的值小于一次函数的值时,自变量x的取值范围.21.某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:月份(x)1月2月3月4月5月6月销售量(p)3.9万台4.0万台4.1万台4.2万台4.3万台4.4万台(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八第6页(共31页)折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.22.问题背景:已知在△ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),连接DE交AC于F,点H是线段AF上一点.(1)初步尝试:如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等,求证:HF=AH+CF.小王同学发现可以由以下两种思路解决此问题:思路一:过点D作DG∥BC,交AC于点G,先证GH=AH,再证GF=CF,从而证得结论成立;思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立;请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分)(2)类比探究:如图2,若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且点D,E的运动速度之比是:1,求的值.(3)延伸拓展:如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记=m,且点D,E的运动速度相等,试用含m的代数式表示(直接写出结果,不必写解答过程)23.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;第7页(共31页)(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.第8页(共31页)2016年河南省信阳市新县中考数学模拟试卷(八)参考答案与试题解析一、选择题(每小题3分,共24分)1.2的相反数是()A.2B.﹣2C.D.【考点】相反数.【分析】根据相反数的定义求解即可.【解答】解:2的相反数为:﹣2.故选:B.2.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×1012元B.8.45×1011元C.8.45×1012元D.84.5×1010元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8450亿元用科学记数法表示为8.45×1011,故选:B.3.如图,直线BD∥EF,AE与BD交于点C,若∠ABC=30°,∠BAC=75°,则∠CEF的大小为()第9页(共31页)A.60°B.75°C.90°D.105°【考点】平行线的性质;三角形内角和定理.【分析】先根据三角形外角的性质求出∠1的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1是△ABC的外角,∠ABC=30°,∠BAC=75°,∴∠1=∠ABC+∠BAC=30°+75°=105°,∵直线BD∥EF,∴∠CEF=∠1=105°.故选D.4.已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根为()A.2B.3C.4D.8【考点】根与系数的关系.【分析】利用根与系数的关系来求方程的另一根.【解答】解:设方程的另一根为α,则α+2=6,解得α=4.故选C.5.有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】因为第10名同学的成绩排在中间位置,即是中位数.所以需知道这19位同学成绩的中位数.【解答】解:19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学第10页(共31页)进入决赛,中位数就是第10位,因而要判断自己能否进入决赛,他只需知道这19位同学的中位数就可以.故选:B.6.如图所示为某几何体的示意图,则该几何体的主视图应为()A.B.C.D.【考点】简单组合体的三视图.【分析】几何体的主视图就是从正面看所得到的图形,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看可得到图形.故选A.7.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°【考点】切线的性质;等腰直角三角形.【分析】首先连接AO,由切线的性质,易得OD⊥AB,即可得OD是△ABC的中位线,继而求得OD的长;根据圆周角定理即可求出∠MND的度数.第11页(共31页)【解答】解:连接OA,∵AB与⊙O相切,∴OD⊥AB,∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,∴AO⊥BC,∴OD∥AC,∵O为BC的中点,∴OD=AC=2;∵∠DOB=45°,∴∠MND=∠DOB=22.5°,故选A.8.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)【考点】坐标与图形变化-旋转.【分析】过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO′=OB,∠A′BO′=∠ABO,然后解直角三角形求出第12页(共31页)O′D、BD,再求出OD,然后写出点O′的坐标即可.【解答】解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为(,).故选:C.二、填空题(每小题3分,共21分)9.25的算术平方根是5.【考点】算术平方根.【分析】根据算术平方根的定义即可求出结果,算术平方根只有一个正根.【解答】解:∵52=25,∴25的算术平方根是5.故答案