专题六:方案设计型一、考点综述方案设计问题的基本类型:(1)类型一:提供讨论材料,进行合理猜想.此类问题一般设置一段讨论的材料,让考生进行科学合理的判断、推理、证明.(2)类型二:画图设计,动手操作。此类问题一般给出图形和若干条信息,让考生按要求对图形进行分割或设计美观的图案(3)类型三:设计方案,比较择优。此类问题一般给出问题情景,提出要求,让考生寻找最佳的解题方案,设计出合理的方案。二、例题精析㈠应用方程(组)不等式(组)解决方案设计型例1.(2009·益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.解析:此类试题一般涉及二元一次方程组、不等式组在实际问题中的应用.,以两人的用的总钱数为等量关系,可以列出方程组.第二问注意“不少”的含义可以根据总钱数和钢笔与笔记本的数量关系列出不等式组.解:(1)设每支钢笔x元,每本笔记本y元,依题意得:3152183yxyx解得:53yx所以,每支钢笔3元,每本笔记本5元(2)设买a支钢笔,则买笔记本(48-a)本依题意得:aaaa48200)48(53,解得:2420a,所以,一共有5种方案即购买钢笔、笔记本的数量分别为:20,28;21,27;22,26;23,25;24,24.点评:解决问题的基本思想是从实际问题中构建数学模型,寻找题目中的等量关系,(或不等关系)列出相应的方程(或不等式组).同步检测:1(2009·安顺)在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.2.(2009·益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.练习参考答案:1.解:(1)设成人人数为x人,则学生人数为(12-x)人.则35x+235(12–x)=350解得:x=8故:学生人数为12–8=4人,成人人数为8人.(2)如果买团体票,按16人计算,共需费用:35×0.6×16=336元336﹤350所以,购团体票更省钱.所以,有成人8人,学生4人;购团体票更省钱.2.解:(1)设每支钢笔x元,每本笔记本y元,依题意得:3152183yxyx解得:53yx所以,每支钢笔3元,每本笔记本5元(2)设买a支钢笔,则买笔记本(48-a)本依题意得:aaaa48200)48(53,解得:2420a,所以,一共有5种方案即购买钢笔、笔记本的数量分别为:20,28;21,27;22,26;23,25;24,24.二、应用函数设计方案问题:例2.(2009·安徽)(1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.解析:此类试题结合函数图像所提供的信息,对信息加工应用,可以求出函数解析式,分析题意,根据:销售利润y=日最高销售量x×每千克的利润(每千克的利润=零售价-批发价),由此整理可得到y关于x的二次函数,解:(1)图①表示批发量不少于20kg且不多于60kg的该种水果,可按5元/kg批发;图②表示批发量高于60kg的该种水果,可按4元/kg批发.(2)由题意得:20606054mmwmm≤≤())>(,函数图象略.由图可知资金金额满足240<w≤300时,以同样的资金可批发到较多数量的该种水果.(3)设日最高销售量为xkg(x>60)则由图②日零售价p满足:32040xp,于是32040xp销售利润23201(4)(80)1604040xyxx,当x=80时,160y最大值,此时p=6即经销商应批发80kg该种水果,日零售价定为6元/kg,当日可获得最大利润160元点评:注重数形结合,领会通过图形所传递的信息,以及二次函数顶点的意义的理解与应用.同步检测:3:(2009·四川省南充市)某电信公司给顾客提供了两种手机上网计费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外,再以每分钟0.06元的价格按上网时间计费.假设顾客甲一个月手机上网的时间共有x分钟,上网费用为y元.(1)分别写出顾客甲按A、B两种方式计费的上网费y元与上网时间x分钟之间的函数关系式,并在图7的坐标系中作出这两个函数的图象;(2)如何选择计费方式能使甲上网费更合算?练习参考答案:练习3。(1)方式A:0.1(0)yxx≥,方式B:0.0620(0)yxx≥,两个函数的图象如图所示.(2)解方程组0.10.0620yxyx得50050xy10100y/元O图7x/分10100y/元Ox/分2050500P方式A方式B所以两图象交于点P(500,50).由图象可知:当一个月内上网时间少于500分时,选择方式A省钱;当一个月内上网时间等于500分时,选择方式A、方式B一样;当一个月内上网时间多于500分时,选择方式B省钱.三、设计图形剪拼方案例3.(2009·浙江省温州市)在所给的9×9方格中,每个小正方形的边长都是1.按要求画平行四边形,使它的四个顶点以及对角线交点都在方格的顶点上.(1)在图甲中画一个平行四边形,使它的周长是整数;(2)在图乙中画一个平行四边形,使它的周长不是整数.(注:图甲、图乙在答题纸上)解析:本题为图案设计题,在设计前一定要注意到要求,除了要满足所画平行四边形,使它的四个顶点以及对角线交点都在方格的顶点上外,还要满足平行四边形的周长是否为整数的要求.点评:本题考查的是设计图形题,在读清要求后,然后根据要求,进行方案的尝试设计,一般要经历一个不断修改的过程,使问题在修正中得以解决.同步检测:4。(2009·河南)为创建绿色校园,学校决定对一块正方形的空地进行种植花草,现向学生征集设计图案.图案要求只能用圆弧在正方形内加以设计,使正方形和所画的图弧构成的图案,既是轴对称图形又是中心对称图形.种植花草部分用阴影表示.请你在图③、图④、图⑤中画出三种不同的的设计图案.提示:在两个图案中,只有半径变化而圆心不变的图案属于同一种,例如:图①、图②只能算一种.练习参考答案:解:下面给出参考方案:①②③④⑤ABCD四、设计测量方案(解直角三角形应用)例4.(2009·济宁)坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪.皮尺.小镜子.(1)小华利用测角仪和皮尺测量塔高.图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A,用测角仪测出看塔顶()M的仰角35,在A点和塔之间选择一点B,测出看塔顶()M的仰角45,然后用皮尺量出A.B两点的距离为18.6m,自身的高度为1.6m.请你利用上述数据帮助小华计算出塔的高度(tan350.7,结果保留整数).(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP的长为am(如图2),你能否利用这一数据设计一个测量方案?如果能,请回答下列问题:①在你设计的测量方案中,选用的测量工具是:;②要计算出塔的高,你还需要测量哪些数据?.解析:本题以解直角三角形为依托,通过设计实际的测量活动,使学生能够灵活的应用所学知识,解决实际生活的问题,第二问是在解决了第一问的基础上让学生另行设计一种测量方案,但是要注意提供的工具和数据的选择使用.解:(1)设CD的延长线交MN于E点,MN长为xm,则(1.6)MExm.∵045,∴1.6DEMEx.∴1.618.617CExx.∵0tantan35MECE,∴1.60.717xx,解得45xm.∴太子灵踪塔()MN的高度为45m.(2)①测角仪.皮尺;②站在P点看塔顶的仰角.自身的高度.(注:答案不唯一)点评:本类试题关键在于画出直角三角形,再分析角边关系,选择合适的三角函数求解,另外要注意设计的方案因为工具的选择不同而方法的多样性,还经常与相似三角形结合.同步检测:5。(2009·四川省成都市)某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进60米到达点D,又测得点A的仰角为45°.请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)练习参考答案:解:(1)设CD的延长线交MN于E点,MN长为xm,则(1.6)MExm.∵045,∴1.6DEMEx.∴1.618.617CExx.∵0tantan35MECE,∴1.60.717xx,解得45xm.∴太子灵踪塔()MN的高度为45m.(2)①测角仪.皮尺;②站在P点看塔顶的仰角.自身的高度.(注:答案不唯一)练习6.如图,由已知可得∠ACB=30°,∠ADB=45°∴在Rt△ABD中,BD=AB.又在Rt△ABC中,tan30°=BCAB,∴BCAB=33,即BC=3AB.∵BC=CD+BD,∴3AB=CD+AB,即(3-1)AB=60.∴AB=1360=30(3+1)(米)答:教学楼的高度为30(3+1)米.五、设计游戏方案(概率应用)例5.(2009·重庆)有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同).小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.解析:修改游戏规则,首先通过列表或树形图求出游戏中的双方的概率,看是否相等,若不相等通过修改规则使得概率对两方相等了,所以应现将两个人的获胜概率计算出来.解:列树形图如下:由树形图可见共有12种可能,并且每种可能出现的机会均等,而小亮和小红的获胜概率分别为,,由此可见游戏不公平,要使的游戏公平,概率应相等,我们可以修改为:若这两个数的积为奇数,小亮赢;若这两个数的积为偶奇数,小红赢.点评:本题以摸球和转盘游戏为背景,设计试题,游戏公平性方案设计,其关键是保证游戏双方获胜的概率相同.同步检测:(2009·广东省梅州市)“五·一”假期,梅河公司组织部分员工到A、B、C三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图.根据统计图回答下列问题:(1)前往A地的车票有_____张,前往C地的车票占全部车票的___