集合,函数,极限,微积分的源头问题与应用数学是一门古老的科学,很可能在几千年以前,古代人为了知道家畜有多少,学会了计数的方法。从那时起,便开始有了数学。过了若干个世纪,数学的各种有助于人们的概念也有了发展。数学中所有概念都是由于人们生活需要才不断产生和发展起来的。随着时间的推移,很多新生的数学思想又不断丰富着数学的宝藏。集合的源头问题与应用集合论最重要的创建者是康托尔(GeorgCantor,1845—1918)。在19世纪人们很少怀疑微积分的基础应该建立在严密的实数理论上,而严密的实数理论可以由集合论推出。但是微积分本质上是一种“无限数学”。那么无限集合的本质是什么?它是否具备有限集合所具有的性质?从19世纪60年代起,法国数学家康托尔承担了这一工作,他清楚地看到以往数学基础中的问题,都与无穷集合有关。其中包括这样一些问题:“整数究竟有多少?”“在一个圆周上包含多少个点?”“一小时里有多少刹那的时光度过?”“在1-2之间的数,比一根线上的点还多吗?”康托解决了以上的问题。他的工作标志着“集合”这个概念已经在数学中诞生了。1900年左右,正当康托尔的思想逐渐被人接受,并成功地把集合论应用到了许多别的数学领域中去,大家认为数学的“绝对严格性”有了保证的时候,一系列完全没有想到的逻辑矛盾,在集合论的边缘被发现了。开始,人们并不直接称之为矛盾,而是只把它们看成数学中的奇特现象。1903年英国哲学家兼数学家罗素(Russell,B.A.W,1872—1970)提出了一个悖论,“一切不包含自身的集合所形成的集合是否包含自身?”答案如果说是,即包含自身,属于这个集合,那么它就不包含自身;如果说否,它不包含自身,那么它理应是这个集合的元素,即包含自身。可能有人看不懂罗素悖论,没关系,罗素本人就用通俗的“理发师悖论”作了比喻;理发师自称,他给所有自己不刮胡子的人刮胡子,但不给任何自己刮胡子的人刮胡子。试问理发师该不该给自己刮胡子?如果他从来不给自己刮胡子,就属于“自己不刮胡子的人”。根据他的自称,他就应该给自己刮胡子,但是,一旦他给自己刮胡子,他就成了“自己刮胡子的人”了。还是根据他的自称,他就不应该给自己刮胡子。所以不管理发师的胡子由谁来刮,都会产生矛盾。罗素悖论以其简单、明确震动了整个西方数学界和逻辑学界,逻辑学家费雷格收到罗素的信之后,在他刚要出版的《算术基础法则》第二卷末尾写道:“一位科学家不会碰到比这更难甚的事情了,即在工作完成之时,它的基础垮掉了。当这本书等待付印的时候,罗素先生的一封信把我置于这种境地。”弗雷格对罗素悖论的迅速反应是惊恐地感到:“算术开始受难。”数学史上第三次危机来临了,数学王国的居民们惶惶不安,因为数学家们一贯追求严密性,一旦发现他们自称绝对严密的数学的基础——集合论并不严密,竟然出现了“悖论”这种自相矛盾的结果,可以想像,他们是多么震惊。震惊之余,数学家们意识到,应当建立某种公理系统来对集合论作出必要的规定,以排除“罗素悖论”和其他有关的“悖论”。现在,各种成功地解决悖论的方案都对集合的“无限扩张”进行了限制,因此现在任何一种形式的集合论,实质上都包含一个“限制大小”的公理。点集论体系是现代数学中重要的基础理论。它的概念和方法已经渗透到代数、拓扑和分析等许多数学分支以及物理学和质点力学等一些自然科学部门,为这些学科提供了奠基的方法,改变了这些学科的面貌。几乎可以说,如果没有集合论的观点,很难对现代数学获得一个深刻的理解。所以集合论的创立不仅对数学基础的研究有重要意义,而且对现代数学的发展也有深远的影响。有关集的理论已应用到从代数到概率的很多数学分支学科中去。在几何中的应用:在空间几何学里,我们要谈到点的集。一个点上的线集是无限集,一条线上的点集也是无限集;当两个平面相交的时候,它们的交集是一条直线。在代数中的应用:一个命题的解集,例如,{x|3x+7=22}的解集为{x=15};有序对集{(x,y)|2x+y=7};在逻辑中的应用:集地最好应用之一,就是用于逻辑演绎。利用集作为逻辑演绎的一个方法,能把各种关系清楚地描画出来。例如,叙述“假定所有的姑娘都很漂亮,做妻子的都是姑娘,那么,所有作妻子的都是漂亮的人”这句话用集来表示更清楚明白,设A=所有漂亮的人的集,B=所有姑娘的集,C=所有作妻子的集。则上面的叙述可表示为(A∩B=B)∧(B∩C=C)→A∩C=C,显然该叙述是正确的。函数的源头问题与应用函数概念的萌芽,可以追溯到古代对图形轨迹的研究,随着社会的发展,人们逐渐发现,在所有已经建立起来的数的运算中,某些量之间存在着一种规律:一个或几个量的变化,会引起另一个量地变化,这种从数学本身的运算中反映出来的量与量之间的相互依赖,就是函数概念的萌芽。一般公认最早给出函数定义的是德国数学家莱布尼兹。函数概念提出之后,由于微积分学的发展,函数概念大致经过了六次扩张,从“解析的函数概念”到“几何的函数概念”到“科学的函数定义”再到“近代函数定义”最后到“现在函数定义”,即为“若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。”二十世纪依赖,函数概念不断扩充,函数不仅是变数,还可以是其他变化着的事物。还出现了所谓广义函数以及函数的函数等等。以研究函数为己任的分析学,成为函数的三大基本分支之一。在分析学中,函数论占有重要地位,它又划分为实函数论和复函数论两大部分。函数所产生的分支为函数论。函数的应用十分广泛。例如,随机函数原理在水文气象中的应用;取向分布函数在材料学中的应用;函数原理在计算机科学中的应用,即编程等;函数在机械制造,线条设计中的应用;函数模型在数学建模中的应用等。极限的源头问题与应用极限的思想可以追溯到古代,刘徽的割圆术就是建立在直观基础上的一种原始的极限思想的应用;古希腊人的穷竭法也蕴含了极限思想,但由于希腊人“对无限的恐惧”,他们避免明显地“取极限”,而是借助于间接证法——归谬法来完成了有关的证明。到了16世纪,荷兰数学家斯泰文在考察三角形重心的过程中改进了古希腊人的穷竭法,他借助几何直观,大胆地运用极限思想思考问题,放弃了归缪法的证明。如此,他就在无意中“指出了把极限方法发展成为一个实用概念的方向”。极限思想的进一步发展是与微积分的建立紧密相联系的。16世纪的欧洲处于资本主义萌芽时期,生产力得到极大的发展,生产和技术中大量的问题,只用初等数学的方法已无法解决,要求数学突破只研究常量的传统范围,而提供能够用以描述和研究运动、变化过程的新工具,这是促进极限发展、建立微积分的社会背景。极限思想的完善与微积分的严格化密切联系。在很长一段时间里,微积分理论基础的问题,许多人都曾尝试解决,但都未能如愿以偿。这是因为数学的研究对象已从常量扩展到变量,而人们对变量数学特有的规律还不十分清楚;对变量数学和常量数学的区别和联系还缺乏了解;对有限和无限的对立统一关系还不明确。这样,人们使用习惯了的处理常量数学的传统思想方法,就不能适应变量数学的新需要,仅用旧的概念说明不了这种“零”与“非零”相互转化的辩证关系。到了18世纪,罗宾斯、达朗贝尔与罗依里埃等人先后明确地表示必须将极限作为微积分的基础概念,并且都对极限作出过各自的定义。其中达朗贝尔的定义是:“一个量是另一个量的极限,假如第二个量比任意给定的值更为接近第一个量”,它接近于极限的正确定义;然而,这些人的定义都无法摆脱对几何直观的依赖。事情也只能如此,因为19世纪以前的算术和几何概念大部分都是建立在几何量的概念上面的。首先用极限概念给出导数正确定义的是捷克数学家波尔查诺,他把函数f(x)的导数定义为差商Δy/Δx的极限f′(x),他强调指出f′(x)不是两个零的商。波尔查诺的思想是有价值的,但关于极限的本质他仍未说清楚。到了19世纪,法国数学家柯西在前人工作的基础上,比较完整地阐述了极限概念及其理论,他在《分析教程》中指出:“当一个变量逐次所取的值无限趋于一个定值,最终使变量的值和该定值之差要多小就多小,这个定值就叫做所有其他值的极限值,特别地,当一个变量的数值(绝对值)无限地减小使之收敛到极限0,就说这个变量成为无穷小”。柯西把无穷小视为以0为极限的变量,这就澄清了无穷小“似零非零”的模糊认识,这就是说,在变化过程中,它的值可以是非零,但它变化的趋向是“零”,可以无限地接近于零。柯西试图消除极限概念中的几何直观,作出极限的明确定义,然后去完成牛顿的愿望。但柯西的叙述中还存在描述性的词语,如“无限趋近”、“要多小就多小”等,因此还保留着几何和物理的直观痕迹,没有达到彻底严密化的程度。为了排除极限概念中的直观痕迹,维尔斯特拉斯提出了极限的静态的定义,给微积分提供了严格的理论基础。所谓an=A,就是指:“如果对任何ε>0,总存在自然数N,使得当n>N时,不等式|an-A|<ε恒成立”。这个定义,借助不等式,通过ε和N之间的关系,定量地、具体地刻划了两个“无限过程”之间的联系。因此,这样的定义是严格的,可以作为科学论证的基础,至今仍在数学分析书籍中使用。在该定义中,涉及到的仅仅是数及其大小关系,此外只是给定、存在、任取等词语,已经摆脱了“趋近”一词,不再求助于运动的直观。众所周知,常量数学静态地研究数学对象,自从解析几何和微积分问世以后,运动进入了数学,人们有可能对物理过程进行动态研究。之后,维尔斯特拉斯建立的ε-N语言,则用静态的定义刻划变量的变化趋势。这种“静态——动态——静态”的螺旋式的演变,反映了数学发展的辩证规律。设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x满足不等式0|x-x。|δ时,对应的函数值f(x)都满足不等式:|f(x)-A|ε那么常数A就叫做函数f(x)当x→x。时的极限。极限思想在现代数学乃至物理学等学科中有着广泛的应用,这是由它本身固有的思维功能所决定的。极限思想揭示了变量与常量、无限与有限的对立统一关系,是唯物辩证法的对立统一规律在数学领域中的应用。借助极限思想,人们可以从有限认识无限,从“不变”认识“变”,从直线形认识曲线形,从量变认识质变,从近似认识精确。无限与有限有本质的不同,但二者又有联系,无限是有限的发展。无限个数的和不是一般的代数和,把它定义为“部分和”的极限,就是借助于极限的思想方法,从有限来认识无限的。“变”与“不变”反映了事物运动变化与相对静止两种不同状态,但它们在一定条件下又可相互转化,这种转化是“数学科学的有力杠杆之一”。例如,要求变速直线运动的瞬时速度,用初等方法是无法解决的,困难在于速度是变量。为此,人们先在小范围内用匀速代替变速,并求其平均速度,把瞬时速度定义为平均速度的极限,就是借助于极限的思想方法,从“不变”来认识“变”的。曲线形与直线形有着本质的差异,但在一定条件下也可相互转化,正如恩格斯所说:“直线和曲线在微分中终于等同起来了”。善于利用这种对立统一关系是处理数学问题的重要手段之一。直线形的面积容易求得,求曲线形的面积问题用初等的方法是不能解决的。刘徽用圆内接多边形逼近圆,一般地,人们用小矩形的面积来逼近曲边梯形的面积,都是借助于极限的思想方法,从直线形来认识曲线形的。量变和质变既有区别又有联系,两者之间有着辩证的关系。量变能引起质变,质和量的互变规律是辩证法的基本规律之一,在数学研究工作中起着重要作用。对任何一个圆内接正多边形来说,当它边数加倍后,得到的还是内接正多边形,是量变而不是质变;但是,不断地让边数加倍,经过无限过程之后,多边形就“变”成圆,多边形面积便转化为圆面积。这就是借助于极限的思想方法,从量变来认识质变的。近似与精确是对立统一关系,两者在一定条件下也可相互转化,这种转化是数学应用于实际计算的重要诀窍。前面所讲到的“部分和”、“平均速度”、“圆内接正多边形面积”,分别是相应的“无穷级数和”、“瞬时速度”、“圆面积”的近似值,取极限后就可得到相应的精确值。这都是借助于极限的思想方法,从近似来认识精确的。用还体现在其