XRD的原理及应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

X射线衍射的原理及应用X射线衍射的应用X射线衍射的进展结语X射线衍射方法X射线衍射的基本原理引言主要内容一、引言•X射线是高速运动的粒子与某种物质相撞击后猝然减速,且与该物质中的内层电子相互作用而产生的。高速运动的电子与物体碰撞时,发生能量转换,电子的运动受阻失去动能,其中一小部分(1%左右)能量转变为X射线,而绝大部分(99%左右)能量转变成热能使物体温度升高。X射线可以直线传播,经过电场、磁场时不发生偏转,具有很高的穿透能力。当穿过物质时它可以被偏振化,并使物质吸收而使强度衰减;它能使空气或其它气体电离;并能杀伤生物细胞等等。•X射线的主要应用领域有:(1)X射线照相术;(2)X射线衍射结构分析;(3)X射线光谱分析;(4)X射线吸收谱分析;(5)X射线漫散射及广角非相干和小角相干,非相干散射;(6)X光电子能谱分析;(7)X射线衍射貌相。在对物质结构进行分析时,可以采用很多方法,如中子衍射、电子衍射、红外光谱等分析方法。•X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。使其应用范围非常广泛,现已渗透到物理、化学、地球科学、材料科学以及各种工程技术科学中,成为一种重要的实验分析手段。二、X衍射的基本原理•1912年劳厄等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。•当X射线照射到晶体物质上,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关,不同的晶体物质具有自己独特的衍射花样,这就是X射线衍射的基本原理。•衍射花样的特征可以有两个方面组成:一方面是衍射线在空间的分布规律,由晶胞的大小、形状和位向决定;另一方面是衍射线束的强度,取决于原子的品种和他们晶胞中的位置,这就是X射线衍射的基本原理。在晶体的点阵结构中,具有周期性排列的原子或电子散射的次生X射线间相互干涉的结果,决定了X射线在晶体中衍射的方向,所以通过对衍射方向的测定,可以得到晶体的点阵结构、晶胞大小和形状等信息劳厄和布拉格分别根据解体结构的点阵和结构基元来对衍射方向与晶胞参数之间的关系进行研究,从而提出了著名的劳尔定律和布拉格方程。这一新发现开辟了晶体结构X射线分析的新领域.奠定了X射线衍射学的基础.劳厄方程(式中h、k、l=0、1、2等)lckbha)cos(cos)cos(cos)cos(cos000布拉格方程ndnlknnhlkh******sin2-------在简化布拉格方程中称衍射面间距或面网间距θ-----布拉格角或掠射角λ----入射X射线波长布拉格方程规定了X射线在晶体内产生衍射的必要条件,只有d、θ、λ同时满足布拉格方程时,晶体才能产生衍射***lkhd三、X射线衍射方法•X射线的波长较短,大约在10-8~10-10cm之间。与晶体中的原子间距数量级相同,因此可以用晶体作为X射线的天然衍射光栅,这就使得用X射线衍射进行晶体结构分析成为可能。在研究晶体材料时,X射线衍射方法非常理想非常有效,而对于液体和非晶态物固体,这种方法也能提供许多基本的重要数据。所以X射线衍射法被认为是研究固体最有效的工具。在各种衍射实验方法中,基本方法有单晶法、多晶法和双晶法。1、单晶X射线衍射分析•单晶X射线衍射分析的基本方法包括劳埃法与周转晶体法劳埃法•劳埃法以光源发出连续X射线照射置于样品台上静止的单晶体样品,用平板底片记录产生的衍射线。根据底片位置的不同,劳埃法可以分为透射劳埃法和背射劳埃法。背射劳埃法不受样品厚度和吸收的限制,是常用的方法。劳埃法的衍射花样由若干劳埃斑组成,每一个劳埃斑相应于晶面的1~n级反射,各劳埃斑的分布构成一条晶带曲线。连续X射线的波长有一个范围,从λ0(短波限)到λm。下图为零层倒易点阵以及两个极限波长反射球的截面大球以B为中心,其半径为λ0的倒数;小球以A为中心,其半径为λm的倒数。在这两个球之间,以线段AB上的点为中心有无限多个球,其半径从(BO)连续变化到(AO)。凡是落到这两个球面之间的区域的倒易结点,均满足布拉格条件,它们将与对应某一波长的反射球面相交而获得衍射。周转晶体法•周转晶体法以单色X射线照射转动的单晶样品,用以样品转动轴为轴线的圆柱形底片记录产生的衍射线,在底片上形成分立的衍射斑。这样的衍射花样容易准确测定晶体的衍射方向和衍射强度,适用于未知晶体的结构分析。周转晶体法很容易分析对称性较低的晶体(如正交、单斜、三斜等晶系晶体)结构,但应用较少。晶体绕晶轴旋转相当于其倒易点阵围绕过原点O并与反射球相切的一根轴转动,于是某些结点将瞬时地通过反射球面。凡是倒易矢量g值小于反射球直径的那些倒易点,都有可能与球面相遇而产生衍射。2、多晶衍射法•所谓多晶法就是用单色X射线照射多晶式样。包括照相法和衍射仪法照相法•照相法以光源发出的特征X射线照射多晶样品,并用底片记录衍射花样。根据样品与底片的相对位置,照相法可以分为德拜法、聚焦法和针孔法。用其轴线与样品轴线重合的圆柱形底片记录者称为德拜(Debye)法;用平板底片记录者称为针孔法。较早的X射线衍射分析多采用照相法,而德拜法是常用的照相法,一般称照相法即指德拜法,德拜法照相装置称德拜相机其中德拜法应用最为普遍。德拜相机德拜相机结构简单,主要由相机圆筒、光栏、承光管和位于圆筒中心的试样架构成。相机圆筒上下有结合紧密的底盖密封,与圆筒内壁周长相等的底片,圈成圆圈紧贴圆筒内壁安装,并有卡环保证底片紧贴圆筒。X射线衍射仪法•X射线衍射仪法以布拉格实验装置为原型,融合了机械与电子技术等多方面的成果。衍射仪由X射线发生器、X射线测角仪、辐射探测器和辐射探测电路4个基本部分组成,是以特征X射线照射多晶体样品,并以辐射探测器记录衍射信息的衍射实验装置。现代X射线衍射仪还配有控制操作和运行软件的计算机系统。•衍射仪法以其方便、快捷、准确和可以自动进行数据处理等特点在许多领域中取代了照相法,近年由于衍射仪与电子计算机的结合,使从操作、测量到数据处理已大体上实现了自动化,这就使衍射仪的威力得到更进一步的发挥,现在已成为晶体结构分析等工作的主要方法。X射线衍射发射装置3、双晶衍射法•双晶衍射仪用一束X射线(通常用Ka1作为射线源)照射一个参考晶体的表面,使符合布拉格条件的某一波长的X射线在很小角度范围内被反射,这样便得到接近单色并受到偏振化的窄反射线,再用适当的光阑作为限制,就得到近乎准值的X射线束。把此X射线作为第二晶体的入射线,第二晶体和计数管在衍射位置附近分别以Δθ及Δ(2θ)角度摆动,就形成通常的双晶衍射仪。•该图为(+,-)排列双晶衍射仪,当两晶体材料相同且衍射晶面的面间距相等时,即为(n,-n)排列;若两晶体的衍射级数不同或晶体种类不同时,为(m,-n)排列。•在近完整晶体中,缺陷、畸变等体现在X射线谱中只有几十弧秒,而半导体材料进行外延生长要求晶格失配要达到10-4或更小。这样精细的要求使双晶X射线衍射技术成为近代光电子材料及器件研制的必备测量仪器,以双晶衍射技术为基础而发展起来的四晶及五晶衍射技术(亦称为双晶衍射),已成为近代X射线衍射技术取得突出成就的标志。但在双晶体衍射体系中,当两个晶体不同时,会发生色散现象。因而,在实际应用双晶衍射仪进行样品分析时,参考晶体要与被测晶体相同,这使得双晶衍射仪的使用受到限制。四、X射线衍射的应用•X射线衍射技术发展到今天,已经成为最基本、最重要的一种结构测试手段,其主要应用主要有物相分析、精密测定点阵参数、应力的测定、晶粒尺寸和点阵畸变的测定、结晶度的测定、晶体取向及织构的测定1、物相分析•X射线照射到晶体所产生的衍射具有一定的特征,可用衍射的方向及强度表征、根据衍射特征来鉴定晶体物相的方法称为物相分析法。•物相分析并不是直接、单一的元素分析。一般元素分析侧重于组成元素种类及其含量,并不涉及元素间的化和状态及聚集状态。对元素分析可利用化学分析、光谱分析、X射线荧光光谱分析等方法,物相分析可获悉所含的元素,但侧重于元素间的化合状态和聚集状态结构的分析。相同元素组成的化合物,其元素聚集态结构不同,则属于不同物相。物相定性分析是鉴定组成试样的物相;而物相定量分析是测定各物相的含量。•X射线物相分析原理是根据任何结晶物质都有其特定的化学组成和结构参数(包括点阵类型、晶胞大小、晶胞中质点的数目及坐标等)。当X射线通过晶体时,产生的衍射图形,对应一系列特定的面间距d和相对强度I/I1值。其中d与晶胞形状及大小有关,I/I1与质点种类及位置有关。所以任何一种结晶物质的衍射数据d和是其晶体结构的必然反映。不同物相混在一起时,他们各自的衍射数据将同时出现,互不干扰的叠加在一起。因此可根据各自的衍射数据来鉴定各种不同的物相。物相分析存在的主要问题•⑴待测物图样中的最强线条可能并非某单一相的最强线,而是两个或两个以上相的某些次强或三强线叠加的结果。这时若以该线作为某相的最强线将找不到任何对应的卡片。•⑵在众多卡片中找出满足条件的卡片,十分复杂而繁锁。虽然可以利用计算机辅助检索,但仍难以令人满意。•⑶定量分析过程中,配制试样、绘制定标曲线或者K值测定及计算,都是复杂而艰巨的工作。•为此,有人提出了可能的解决办法,认为从相反的角度出发,根据标准数据(PDF卡片)利用计算机对定性分析的初步结果进行多相拟合显示,绘出衍射角与衍射强度的模拟衍射曲线。通过调整每一物相所占的比例,与衍射仪扫描所得的衍射图谱相比较,就可以准确地得到定性和定量分析的结果,从而免去了一些定性分析和整个定量分析的实验和计算过程。2、精密测定点阵参数•点阵参数是物质的基本结构参数,任何一种晶体物质在一定状态下都有一定的点阵参数。精确测定点阵参数有助于研究该物质的键合能和键强。计算理论密度、各向异性热膨胀系数和压缩系数、固溶体的组分和固溶度、宏观残余应力大小、确定相溶解度曲线(见下图)和相图的相界、研究相变过程、分析材料点阵参数与各种物理性能的关系等。点阵参数的测定是通过X射线衍射线位置的测定而获得的,该方法利用精确测得的晶体衍射线峰位2H角数据,然后根据布拉格定律和点阵参数与晶面间距d值之间的关系式计算点阵参数的值。固体的溶解度曲线点阵常数测定中的精确度涉及的问题•点阵常数测定中的精确度涉及两个独立的问题,即波长的精度和布拉格角的测量精度。波长的问题主要是X射线谱学家的责任,衍射工作者的任务是要在波长分布与衍射线分布之间建立一一对应的关系。知道每根反射线的密勒指数后就可以根据不同的晶系用相应的公式计算点阵常数。晶面间距测量的精度随θ角的增加而增加,θ越大得到的点阵常数值越精确,因而点阵常数测定时应选用高角度衍射线。误差一般采用图解外推法和最小二乘法来消除,点阵常数测定的精确度极限处在1×10-5附近。3、应力的测定•X射线测定应力以衍射花样特征的变化作为应变的量度。应力主要有宏观应力和微观应力,应力的测定主要采用衍射仪法。•宏观应力均匀分布在物体中较大范围内,产生的均匀应变表现为该范围内方向相同的各晶粒中同名晶面间距变化相同,导致衍射线向某方向位移,这就是X射线测量宏观应力的基础。•微观应力在各晶粒间甚至一个晶粒内各部分间彼此不同,产生的不均匀应变表现为某些区域晶面间距增加、某些区域晶面间距减少,结果使衍射线向不同方向位移,使其衍射线漫散宽化,这是X射线测量微观应力的基础。超微观应力在应变区内使原子偏离平衡位置,导致衍射线强度减弱,故可以通过X射线强度的变化测定超微观应力。•X射线测定应力具有非破坏性,可测小范围局部应力,可测表层应力,可区别应力类型、测量时无需使材料处于无应力状态等优点,但其测量精确度受组织结构的影响较大,X射线也难以测定动态瞬时应力。X射线应力仪X射线应力仪的结构示意图如图,其核心部份为测角仪。应力仪的测角仪为立式,测角仪上装有可绕试件转动的X射线管和计数管(即辐

1 / 44
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功