On Sequential Monte Carlo Sampling Methods for Bay

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

OnSequentialMonteCarloSamplingMethodsforBayesianFilteringArnaudDoucet(correspondingauthor)-SimonGodsill-ChristopheAndrieuSignalProcessingGroup,DepartmentofEngineeringUniversityofCambridgeTrumpingtonStreet,CB21PZCambridge,UKEmail:ad2@eng.cam.ac.ukABSTRACTInthisarticle,wepresentanoverviewofmethodsforsequentialsimulationfromposteriordistributions.ThesemethodsareofparticularinterestinBayesian lteringfordiscretetimedynamicmodelsthataretypicallynonlinearandnon-Gaussian.Ageneralimportancesamplingframeworkisdevelopedthatuni esmanyofthemethodswhichhavebeenproposedoverthelastfewdecadesinseveraldi erentscienti cdisciplines.Novelextensionstotheexistingmethodsarealsoproposed.Weshowinparticularhowtoincorporatelocallinearisationmethodssimilartothosewhichhavepreviouslybeenemployedinthedetermin-istic lteringliterature;theseleadtoverye ectiveimportancedistributions.FurthermorewedescribeamethodwhichusesRao-Blackwellisationinordertotakeadvantageoftheanalyticstructurepresentinsomeimportantclassesofstate-spacemodels.Ina nalsectionwedevelopalgorithmsforprediction,smoothingandevaluationofthelikelihoodindynamicmodels.1Keywords:Bayesian ltering,nonlinearnon-Gaussianstatespacemodels,sequentialMonteCarlomethods,importancesampling,Rao-BlackwellisedestimatesI.IntroductionManyproblemsinappliedstatistics,statisticalsignalprocessing,timeseriesanalysisandeconometricscanbestatedinastatespaceformasfollows.AtransitionequationdescribesthepriordistributionofahiddenMarkovprocessfxk;k2g,theso-calledhiddenstateprocess,andanobservationequationdescribesthelikelihoodoftheobservationsfyk;k2g,kbeingadiscretetimeindex.WithinaBayesianframework,allrelevantinformationaboutfx0;x1;:::;xkggivenobservationsuptoandincludingtimekcanbeobtainedfromtheposteriordistributionp(x0;x1;:::;xkjy0;y1;:::;yk).Inmanyapplicationsweareinterestedinestimatingrecursivelyintimethisdistributionandparticularlyoneofitsmarginals,theso-called lteringdistributionp(xkjy0;y1;:::;yk).Giventhe lteringdistributiononecanthenroutinelyproceedto lteredpointestimatessuchastheposteriormodeormeanofthestate.ThisproblemisknownastheBayesian lteringproblemortheoptimal lteringproblem.Practicalapplicationsincludetargettracking(Gordonetal.,1993),blinddeconvolutionofdigitalcommunicationschannels(Clappetal.,1999)(Liuetal.,1995),estimationofstochasticvolatility(Pittetal.,1999)anddigitalenhancementofspeechandaudiosignals(Godsilletal.,1998).Exceptinafewspecialcases,includinglinearGaussianstatespacemodels(Kalman lter)andhidden nite-statespaceMarkovchains,itisimpossibletoevaluatethesedis-tributionsanalytically.Fromthemid1960's,agreatdealofattentionhasbeendevotedtoapproximatingthese lteringdistributions,seeforexample(Jazwinski,1970).Themostpopularalgorithms,theextendedKalman lterandtheGaussiansum lter,relyonanalyt-icalapproximations(Andersonetal.,1979).Interestingworkintheautomaticcontrol eldwascarriedoutduringthe1960'sand70'susingsequentialMonteCarlo(MC)integration2methods,see(Akashietal.,1975)(Handschinet.al,1969)(Handschin1970)(Zaritskiietal.,1975).PossiblyowingtotheseverecomputationallimitationsofthetimetheseMonteCarloalgorithmshavebeenlargelyneglecteduntilrecently.Inthelate80's,massiveincreasesincomputationalpowerallowedtherebirthofnumericalintegrationmethodsforBayesian ltering(Kitagawa1987).CurrentresearchhasnowfocusedonMCintegrationmethods,whichhavethegreatadvantageofnotbeingsubjecttotheassumptionoflinearityorGaus-sianityinthemodel,andrelevantworkincludes(Muller1992)(West,1993)(Gordonetal.,1993)(Kongetal.,1994)(Liuetal.,1998).Themainobjectiveofthisarticleistoincludeinauni edframeworkmanyoldandmorerecentalgorithmsproposedindependentlyinanumberofappliedscienceareas.Both(Liuetal.,1998)and(Doucet,1997)(Doucet,1998)underlinethecentralr^oleofsequentialimportancesamplinginBayesian ltering.However,contraryto(Liuetal.,1998)whichem-phasizestheuseofhybridschemescombiningelementsofimportancesamplingwithMarkovChainMonteCarlo(MCMC),wefocushereoncomputationallycheaperalternatives.WedescribealsohowitispossibletoimprovecurrentexistingmethodsviaRao-Blackwellisationforausefulclassofdynamicmodels.Finally,weshowhowtoextendthesemethodstocomputethepredictionand xed-intervalsmoothingdistributionsaswellasthelikelihood.Thepaperisorganisedasfollows.Insection2,webrieyreviewtheBayesian lteringproblemandclassicalBayesianimportancesamplingisproposedforitssolution.WethenpresentasequentialversionofthismethodwhichallowsustoobtainageneralrecursiveMC lter:thesequentialimportancesampling(SIS) lter.Underacriterionofminimumconditionalvarianceoftheimportanceweights,weobtaintheoptimalimportancefunctionforthismethod.Unfortunately,fornumerousmodelsofappliedinteresttheoptimalimportancefunctionleadstonon-analyticimportanceweights,andhenceweproposeseveralsuboptimaldistributionsandshowhowtoobtainasspecialcasesmanyofthealgorithmspresentedintheliterature.Firstlyweconsiderlocallinearisationmethodsofeitherthestatespacemodel3ortheoptimalimportancefunction,givingsomeimportantexamples.Theselinearisationmethodsseemtobeaverypromisingwaytoproceedinproblemsofth

1 / 35
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功