选修4-4直角坐标系

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

思考:声响定位问题某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比其他两个观测点晚4s,已知各观测点到中心的距离都是1020m,试确定该巨响的位置。(假定当时声音传播的速度为340m/s,各相关点均在同一平面上)(2004年广东高考题)一.平面直角坐标系的建立yxBACPo以接报中心为原点O,以BA方向为x轴,建立直角坐标系.设A、B、C分别是西、东、北观测点,设P(x,y)为巨响为生点,由B、C同时听到巨响声,得|PC|=|PB|,故P在BC的垂直平分线PO上,PO的方程为y=-x,因A点比B点晚4s听到爆炸声,yxBACPo则A(1020,0),B(-1020,0),C(0,1020)故|PA|-|PB|=340×4=1360由双曲线定义知P点在以A、B为焦点的双曲线上,12222byax)0(13405680340568010201020,6802222222222xyxacbca故双曲线方程为10680),5680,5680(,5680,5680POPyx故即答:巨响发生在接报中心的西偏北450距中心处m10680用y=-x代入上式,得,∵|PA||PB|,5680x解决此类应用题的关键:1、建立平面直角坐标系2、设点(点与坐标的对应)3、列式(方程与坐标的对应)4、化简5、说明坐标法建系时,根据几何特点选择适当的直角坐标系:(1)如果图形有对称中心,可以选对称中心为坐标原点;(2)如果图形有对称轴,可以选择对称轴为坐标轴;(3)使图形上的特殊点尽可能多的在坐标轴上。例1.已知△ABC的三边a,b,c满足b2+c2=5a2,BE,CF分别为边AC,CF上的中线,建立适当的平面直角坐标系探究BE与CF的位置关系。(A)FBCEOyx以△ABC的顶点A为原点O,边AB所在的直线x轴,建立直角坐标系,由已知,点A、B、F的坐标分别为解:A(0,0),B(c,0),F(,0).2cCxy设点的坐标为(x,y),则点E的坐标为(,).222222225||||5||bcaACABBC由,可得到,222225[()].xycxcy即22222250.xyccx整理得(,),(,),222xycBEcCFxy因为2()()0.222xcyBECFcx所以因此,BE与CF互相垂直.xO2y=sinxy=sin2x二.平面直角坐标系中的伸缩变换思考:(1)怎样由正弦曲线y=sinx得到曲线y=sin2x?在正弦曲线y=sinx上任取一点P(x,y),保持纵坐标不变,将横坐标x缩为原来的,就得到正弦曲线y=sin2x.12上述的变换实质上就是一个坐标的压缩变换,即:设P(x,y)是平面直角坐标系中任意一点,保持纵坐标不变,将横坐标x缩为原来,得到点P’(x’,y’).坐标对应关系为:12通常把叫做平面直角坐标系中的一个压缩变换。1坐标对应关系为:x’=xy’=y121设点P(x,y)经变换得到点为P’(x’,y’)x’=xy’=3y2通常把叫做平面直角坐标系中的一个坐标伸长变换。2在正弦曲线上任取一点P(x,y),保持横坐标x不变,将纵坐标伸长为原来的3倍,就得到曲线y=3sinx。(2)怎样由正弦曲线y=sinx得到曲线y=3sinx?写出其坐标变换。在正弦曲线y=sinx上任取一点P(x,y),保持纵坐标不变,将横坐标x缩为原来的,在此基础上,将纵坐标变为原来的3倍,就得到正弦曲线y=3sin2x.12设点P(x,y)经变换得到点为P’(x’,y’)x’=xy’=3y123通常把叫做平面直角坐标系中的一个坐标伸缩变换。3(3)怎样由正弦曲线y=sinx得到曲线y=3sin2x?写出其坐标变换。定义:设P(x,y)是平面直角坐标系中任意一点,在变换'(0):'(0)xxyy的作用下,点P(x,y)对应P’(x’,y’).称为平面直角坐标系中的伸缩变换。4注(1)(2)把图形看成点的运动轨迹,平面图形的伸缩变换可以用坐标伸缩变换得到;(3)在伸缩变换下,平面直角坐标系不变,在同一直角坐标系下进行伸缩变换。0,0练习:1.在直角坐标系中,求下列方程所对应的图形经过伸缩变换x’=xy’=3y后的图形。(1)2x+3y=0;(2)x2+y2=12.在同一直角坐标系下,求满足下列图形的伸缩变换:曲线4x2+9y2=36变为曲线x’2+y’2=13.在同一直角坐标系下,经过伸缩变换后,曲线C变为x’2-9y’2=1,求曲线C的方程并画出图形。x’=3xy’=y课堂小结:(1)体会坐标法的思想,应用坐标法解决几何问题;(2)掌握平面直角坐标系中的伸缩变换。预习:极坐标系(书本P9-P11)BACPyx(x,y)(x-2,0)(x+2,0)P8第2题。这就是所求的轨迹方程整理得即的垂直平分线上,所以也在线段因为的坐标分别为、平分线上的点,所以的垂直是线段因为的外心为设。点轴建立直角坐标系,则垂直的直线为与轴,过点为、解:以直线0562)3()0,2()0,2(),,()3,0(222222yxyyxPBPAABPxxCBBCPyxPABCAylAxl

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功