一次函数与几何图形综合题(含答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

飘蓝工作室出品(Peuland)精英部落QQ群:172077288部落长期招募一线教师共享资源一次函数与几何图形综合专题讲座思想方法小结:(1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结:(1)常数k,b对直线y=kx+b(k≠0)位置的影响.①当b>0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;当b﹤0时,直线与y轴的负半轴相交.②当k,b异号时,即-kb>0时,直线与x轴正半轴相交;当b=0时,即-kb=0时,直线经过原点;当k,b同号时,即-kb﹤0时,直线与x轴负半轴相交.③当k>O,b>O时,图象经过第一、二、三象限;当k>0,b=0时,图象经过第一、三象限;当b>O,b<O时,图象经过第一、三、四象限;当k﹤O,b>0时,图象经过第一、二、四象限;当k﹤O,b=0时,图象经过第二、四象限;当b<O,b<O时,图象经过第二、三、四象限.(2)直线y=kx+b(k≠0)与直线y=kx(k≠0)的位置关系.直线y=kx+b(k≠0)平行于直线y=kx(k≠0)当b>0时,把直线y=kx向上平移b个单位,可得直线y=kx+b;当b﹤O时,把直线y=kx向下平移|b|个单位,可得直线y=kx+b.(3)直线b1=k1x+b1与直线y2=k2x+b2(k1≠0,k2≠0)的位置关系.飘蓝工作室出品(Peuland)精英部落QQ群:172077288部落长期招募一线教师共享资源①k1≠k2y1与y2相交;②2121bbkky1与y2相交于y轴上同一点(0,b1)或(0,b2);③2121,bbkky1与y2平行;④2121,bbkky1与y2重合.例题精讲:1、直线y=-2x+2与x轴、y轴交于A、B两点,C在y轴的负半轴上,且OC=OB(1)求AC的解析式;(2)在OA的延长线上任取一点P,作PQ⊥BP,交直线AC于Q,试探究BP与PQ的数量关系,并证明你的结论。(3)在(2)的前提下,作PM⊥AC于M,BP交AC于N,下面两个结论:①(MQ+AC)/PM的值不变;②(MQ-AC)/PM的值不变,期中只有一个正确结论,请选择并加以证明。2.(本题满分12分)如图①所示,直线L:5ymxm与x轴负半轴、y轴正半轴分别交xyoBACPQxyoBACPQM飘蓝工作室出品(Peuland)精英部落QQ群:172077288部落长期招募一线教师共享资源于A、B两点。(1)当OA=OB时,试确定直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=4,BN=3,求MN的长。(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③。问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值,若是,请求出其值,若不是,说明理由。考点:一次函数综合题;直角三角形全等的判定.专题:代数几何综合题.分析:(1)是求直线解析式的运用,会把点的坐标转化为线段的长度;(2)由OA=OB得到启发,证明∴△AMO≌△ONB,用对应线段相等求长度;(3)通过两次全等,寻找相等线段,并进行转化,求PB的长.解答:解:(1)∵直线L:y=mx+5m,∴A(-5,0),B(0,5m),由OA=OB得5m=5,m=1,第2题图①第2题图②第2题图③CBAl2l10xy飘蓝工作室出品(Peuland)精英部落QQ群:172077288部落长期招募一线教师共享资源∴直线解析式为:y=x+5.(2)在△AMO和△OBN中OA=OB,∠OAM=∠BON,∠AMO=∠BNO,∴△AMO≌△ONB.∴AM=ON=4,∴BN=OM=3.(3)如图,作EK⊥y轴于K点.先证△ABO≌△BEK,∴OA=BK,EK=OB.再证△PBF≌△PKE,∴PK=PB.∴PB=21BK=21OA=25.点评:本题重点考查了直角坐标系里的全等关系,充分运用坐标系里的垂直关系证明全等,本题也涉及一次函数图象的实际应用问题.3、如图,直线1l与x轴、y轴分别交于A、B两点,直线2l与直线1l关于x轴对称,已知直线1l的解析式为3yx,(1)求直线2l的解析式;(3分)(2)过A点在△ABC的外部作一条直线3l,过点B作BE⊥3l于E,过点C作CF⊥3l于F分别,请画出图形并求证:BE+CF=EF(3)△ABC沿y轴向下平移,AB边交x轴于点P,过P点的直线与AC边的延长线相交于点Q,与y轴相交与点M,且BP=CQ,在△ABC平移的过程中,①OM为定值;②MC为定值。在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。(6分)考点:轴对称的性质;全等三角形的判定与性质.CBA0xyQMPCBA0xy飘蓝工作室出品(Peuland)精英部落QQ群:172077288部落长期招募一线教师共享资源分析:(1)根据题意先求直线l1与x轴、y轴的交点A、B的坐标,再根据轴对称的性质求直线l2的上点C的坐标,用待定系数法求直线l2的解析式;(2)根据题意结合轴对称的性质,先证明△BEA≌△AFC,再根据全等三角形的性质,结合图形证明BE+CF=EF;(3)首先过Q点作QH⊥y轴于H,证明△QCH≌△PBO,然后根据全等三角形的性质和△QHM≌△POM,从而得HM=OM,根据线段的和差进行计算OM的值.解答:解:(1)∵直线l1与x轴、y轴分别交于A、B两点,∴A(-3,0),B(0,3),∵直线l2与直线l1关于x轴对称,∴C(0,-3)∴直线l2的解析式为:y=-x-3;(2)如图1.答:BE+CF=EF.∵直线l2与直线l1关于x轴对称,∴AB=BC,∠EBA=∠FAC,∵BE⊥l3,CF⊥l3∴∠BEA=∠AFC=90°∴△BEA≌△AFC∴BE=AF,EA=FC,∴BE+CF=AF+EA=EF;(3)①对,OM=3过Q点作QH⊥y轴于H,直线l2与直线l1关于x轴对称∵∠POB=∠QHC=90°,BP=CQ,又AB=AC,∴∠ABO=∠ACB=∠HCQ,则△QCH≌△PBO(AAS),∴QH=PO=OB=CH∴△QHM≌△POM∴HM=OM飘蓝工作室出品(Peuland)精英部落QQ群:172077288部落长期招募一线教师共享资源∴OM=BC-(OB+CM)=BC-(CH+CM)=BC-OM∴OM=21BC=3.点评:轴对称的性质:对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.4.如图,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足.(1)求直线AB的解析式;(2)若点M为直线y=mx上一点,且△ABM是以AB为底的等腰直角三角形,求m值;(3)过A点的直线交y轴于负半轴于P,N点的横坐标为-1,过N点的直线交AP于点M,试证明的值为定值.考点:一次函数综合题;二次根式的性质与化简;一次函数图象上点的坐标特征;待定系数法求正比例函数解析式;全等三角形的判定与性质;等腰直角三角形.专题:计算题.分析:(1)求出a、b的值得到A、B的坐标,设直线AB的解析式是y=kx+b,代入得到方程组,求出即可;(2)当BM⊥BA,且BM=BA时,过M作MN⊥Y轴于N,证△BMN≌△ABO(AAS),求出M的坐标即可;②当AM⊥BA,且AM=BA时,过M作MN⊥X轴于N,同法求出M的坐标;③当AM⊥BM,且AM=BM时,过M作MN⊥X轴于N,MH⊥Y轴于H,证△BHM≌△AMN,求出M的坐标即可.(3)设NM与x轴的交点为H,分别过M、H作x轴的垂线垂足为G,HD交MP于D点,飘蓝工作室出品(Peuland)精英部落QQ群:172077288部落长期招募一线教师共享资源求出H、G的坐标,证△AMG≌△ADH,△AMG≌△ADH≌△DPC≌△NPC,推出PN=PD=AD=AM代入即可求出答案.解答:解:(1)要使b=有意义,必须(a-2)2=0,4-b=0,∴a=2,b=4,∴A(2,0),B(0,4),设直线AB的解析式是y=kx+b,代入得:0=2k+b,4=b,解得:k=-2,b=4,∴函数解析式为:y=-2x+4,答:直线AB的解析式是y=-2x+4.(2)如图2,分三种情况:①如图(1)当BM⊥BA,且BM=BA时,过M作MN⊥Y轴于N,△BMN≌△ABO(AAS),MN=OB=4,BN=OA=2,∴ON=2+4=6,∴M的坐标为(4,6),代入y=mx得:m=23,②如图(2)当AM⊥BA,且AM=BA时,过M作MN⊥X轴于N,△BOA≌△ANM(AAS),同理求出M的坐标为(6,2),m=31,③当AM⊥BM,且AM=BM时,过M作MN⊥X轴于N,MH⊥Y轴于H,则△BHM≌△AMN,∴MN=MH,飘蓝工作室出品(Peuland)精英部落QQ群:172077288部落长期招募一线教师共享资源设M(x,x)代入y=mx得:x=mx,(2)∴m=1,答:m的值是23或31或1.(3)解:如图3,结论2是正确的且定值为2,设NM与x轴的交点为H,分别过M、H作x轴的垂线垂足为G,HD交MP于D点,由y=2kx-2k与x轴交于H点,∴H(1,0),由y=2kx-2k与y=kx-2k交于M点,∴M(3,K),而A(2,0),∴A为HG的中点,∴△AMG≌△ADH(ASA),又因为N点的横坐标为-1,且在y=2kx-2k上,∴可得N的纵坐标为-K,同理P的纵坐标为-2K,∴ND平行于x轴且N、D的横坐标分别为-1、1∴N与D关于y轴对称,∵△AMG≌△ADH≌△DPC≌△NPC,∴PN=PD=AD=AM,∴AMPN-PM=2.点评:本题主要考查对一次函数图象上点的坐标特征,等腰直角三角形性质,用待定系数法求正比例函数的解析式,全等三角形的性质和判定,二次根式的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.5.如图,直线AB:y=-x-b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1。(1)求直线BC的解析式:飘蓝工作室出品(Peuland)精英部落QQ群:172077288部落长期招募一线教师共享资源(2)直线EF:y=kx-k(k≠0)交AB于E,交BC于点F,交x轴于D,是否存在这样的直线EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,说明理由?(3)如图,P为A点右侧x轴上的一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角△BPQ,连接QA并延长交y轴于点K,当P点运动时,K点的位置是否发现变化?若不变,请求出它的坐标;如果变化,请说明理由。考点:一次函数综合题;一次函数的定义;正比例函数的图象;待定系数法求一次函数解析式.专题:计算题.分析:代入点的坐标求出解析式y=3x+6,利用坐标相等求出k的值,用三角形全等的相等关系求出点的坐标.解答:解:(1)由已知:0=-6-b,∴b=-6,∴AB:y=-x+6.∴B(0,6)∴OB=6∵OB:OC=3:1,OC=3OB=2,∴C(-2,0)设BC的解析式是Y=ax+c,代入得;6=0•a+c,0=-2a+c,解得:a=3,c=6,∴BC:y=3x+6.直线BC的解析式是:y=3x+6;(2)过E、F分别作EM⊥x轴,FN⊥x轴,则∠EMD=∠FND=90°.∵S△EBD=S△FBD,∴DE=DF.又∵∠NDF=∠EDM,∴△NFD≌△EDM,∴FN=ME.联立y=kx-k,y=-x+6飘蓝工作室出

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功