第1讲--分子扩散基本定律

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

硅酸盐工业热工基础第三章传质原理第1讲分子扩散基本定律学习要点1、几个概念及其表示方法浓度质量浓度Vmii质量分数iiw物质的量浓度VMmCiii摩尔分数CC)y(xiii速度以静止坐标为参考基准以平均速度为参考标准in1iiuuin1iiMuCCuuuiMiuu传质通量相对于静止坐标系相对于平均速度iiiumiiiuCN)uu(jiii)uu(CJMiii2、斐克定律dzdDJdzdCDJAABz,AAABz,A或3、气体、液体和固体中的分子扩散系数概述传质物质由高浓度向低浓度方向转移的过程称为质量传递,简称传质。图3-1-1(a)同种物质的传质(b)混合物质的传质(a)(b)传质发生的条件单一物质或混合气体内部存在浓度差。浓度差是传质的推动力。T1T2T3QC1C2C3CCBCABA传热发生的条件物质内部存在温度差。温度差是传热的推动力。概述均匀混合物的传质概述热扩散:由温度差引起的传质。压力扩散:由压力差引起的传质。浓度差是传质发生的内在因素,而温度差和压力差是传质发生的外在因素。一般来说,只有当温度差或压力差很大时,热扩散和压力扩散才会对传质产生明显的影响,而对一般的工程而言,热扩散和压力扩散的影响都忽略不计,只考虑等温、均压下的浓度扩散。传质的基本方式概述分子扩散:由物质的分子、原子及自由电子等微观粒子的随机运动引起的扩散。紊流扩散:在流体中由于紊流脉动作用引起的扩散。分子扩散发生在静止流体或在垂直于浓度梯度方向上作层流运动的流体以及固体中的传质。而在实际工程问题中,除了一定存在的分子扩散外,大多数都存在紊流扩散,所以通常是分子扩散和紊流扩散的联合作用,这种联合扩散称为对流传质。§3-1分子扩散基本定律定义:在多元混合物中,各组分在混合物中所占分量的多少。表示法:质量浓度和物质的量浓度。一、基本概念质量浓度:在单位体积混合物中某一组分i的质量称为该组分的质量浓度,用i表示,单位为Kg/m3。1、浓度Vmii由n种组分构成的混合物的总质量浓度为:n1ii(3-1)§3-1分子扩散基本定律物质的量浓度:在单位体积混合物中某一组分i的物质的量称为该组分的物质的量浓度,用Ci表示,单位为kmol/m3。VMmCiii由n种组分构成的混合物的总物质的量浓度为:n1iiCC(3-2)MC(3-3)若已知混合物的质量浓度和分子量M,则混合物的物质的量浓度可以表示为:§3-1分子扩散基本定律应用理想气体状态方程,物质的量浓度可表示为:RTPVnCiii(3-4)(3-5)式中,Pi、P为组分i的分压力和混合气体的总压力;ni、n为组分i的物质的量和混合气体总的物质的量;V为混合气体的体积;R为通用气体常数;T为混合气体的绝对温度。RTPVnC§3-1分子扩散基本定律质量百分数:混合物中某一组分i的质量浓度与混合物总质量浓度之比,用wi表示。n1iiiiiw(3-6)根据质量分数的定义,则成分表示法质量百分数和摩尔百分数1wn1ii(3-7)§3-1分子扩散基本定律摩尔百分数:混合物中某一组分i的物质的量浓度与混合物总物质的量浓度之比,对于混合气体,i组分的摩尔百分数用yi表示;对于液体或固体,i组分的摩尔百分数用xi表示。CCxii(3-8)根据摩尔分数的定义,则1)x(yin1ii(3-9)对于液体或固体对于气体PPCCyiii(3-10)§3-1分子扩散基本定律式中,Mi为组分i的分子量。质量百分数与摩尔百分数的关系n1iiiAAAMwMwyn1iiiAAAMyMywn1iiAAACCCCy根据质量分数和摩尔分数的定义及质量浓度和摩尔浓度的关系n1iiAAAwMC例3-1计算温度为25C,压力为105Pa的干空气中O2和N2的质量分数及干空气的平均分子量。取1Kmol干空气作为基准,则其中有233.084.2872.6w2O解:O2:10.21=0.21kmol或0.2132=6.72kgN2:10.79=0.79kmol或0.7928=22.12kg故1Kmol干空气的质量为6.72+22.12=28.84kg则O2和N2的质量百分数分别为767.084.2812.22w2N1Kmol干空气的质量为28.84kg,故干空气的平均分子量为28.84。§3-1分子扩散基本定律质量平均速度一、基本概念摩尔平均速度2、扩散速度n1iiiuun1iiiMCuCu(3-11)(3-12)式中,ui为组分i相对于固定坐标的绝对速度。组分i相对于质量平均速度或摩尔平均速度的速度称为扩散速度。ui-u为组分i相对于质量平均速度的扩散速度;ui-uM为组分i相对于摩尔平均速度的扩散速度。§3-1分子扩散基本定律一、基本概念定义:单位时间内通过垂直于浓度梯度的单位面积上的物质数量。根据所取单位的不同可有质量通量m[kg/(m2·s)]或摩尔通量N[kmol/(m2·s)]两种表示方法。3、扩散通量根据参照系的不同,扩散通量分为净扩散通量和分子扩散通量。对于组分i,相对于固定坐标所确定的通量称为净扩散通量,用m或N表示;相对于以平均速度u或uM移动的坐标所确定的通量称为分子扩散通量,通常用j或J表示。§3-1分子扩散基本定律组分A和组分B的净质量通量:二元组分系统的扩散BBBAAAumum,混合物的总质量通量:uuummmBBAABA组分A和组分B的净摩尔通量:BBBAAAuCNuCN,混合物的总摩尔通量:MBBAABAuuCuCNNN组分A和组分B的净质量通量可以看作分子扩散通量和流体流动带动的质量通量之和,即:MBBBMAAABBBAAAuCJNuCJNujmujm,或,整理可得:0JJ0jjBABA或说明二元系统中两组分的分子扩散通量大小相等而方向相反。§3-1分子扩散基本定律斐克定律:描述分子扩散过程中传质通量与浓度梯度之间关系的定律。二、斐克(Fick)定律式中,JA,z、ja,z为组分A在z方向相对于摩尔(质量)平均速度的分子扩散摩尔(质量)通量,单位kmol/(m2·s)、kg/(m2·s);dCA/dz和dA/dz为组分A在z方向上的浓度梯度,kmol/m4、kg/m4;DAB为分子扩散系数,m2/s,下标AB表示A在B中的扩散。表达式:dzdDjdzdCDJAABz,AAABz,A或(3-13)适用条件:等温等压且浓度场不随时间而改变的稳定态。§3-1分子扩散基本定律注意:式(3-13)和(3-14)都是相对于以混合物的摩尔平均速度或质量平均速度移动着的动坐标系而言的。对于固定坐标这些表达式将不再适用。除非在等质量扩散或等摩尔扩散时,即混合物整体的质量平均速度或摩尔平均速度为零时,才能用式(3-13)和(3-14)表示扩散过程。在非等温或非等压条件下,可以得到不受温度和压力限制的菲克定律:dzdwDjdzdyCDJAABz,AAABz,A或(3-14)z,MAz,AAz,AuCuCJ对于混合物整体的质量平均速度或摩尔平均速度不为零的固定坐标,即u或uM≠0若二元混合物在z方向上的平均速度为常数,则组分A在z方向上的分子扩散摩尔通量可写为:又dzdyCDJAABz,A故z,MAAABz,AAuCdzdyCDuC§3-1分子扩散基本定律同理:)mm(wdzdwDmz,Bz,AAAABz,A即)NN(ydzdyCDNz,Bz,AAAABz,AA的实际传质通量A的分子扩散通量A的主体流动通量对于二元混合物,有)uCuC(yuCz,BBz,AAAz,MA代入上式)uCuC(ydzdyCDuCz,BBz,AAAAABz,AA§3-1分子扩散基本定律可得:z,MAAABz,AAuCdzdyCDuC写成矢量形式:)NN(yyCDNBAAAABA)mm(wwDmBAAAABA该式称为扩散方程式。表示组分A相对于固定坐标的净扩散通量等于该组分的分子扩散通量与该组分随混合物整体流动而传递的通量之和,实际上是相对于固定坐标的斐克定律。(3-15)§3-1分子扩散基本定律式(3-15)中,若NA=-NB(称该类型的扩散为等摩尔逆扩散),则有0NNBA0JJBAAAJN这说明等摩尔逆扩散时,无混合物整体流动,只有由浓度梯度推动的分子扩散。且例3-2温度为25C,总压力为105Pa的甲烷-氦(CH4-He)混合物盛于一容器中,其中某点的甲烷分压为0.6105Pa,距离该点2.0cm处的甲烷分压降低为0.2105Pa。设容器中总压恒定,扩散系数为0.675cm2/s,试计算甲烷在稳态时分子扩散的摩尔通量。PA,1=0.6105Pa,PA,2=0.2105Pa,解:因总压力为常数,根据理想气体状态方程斐克定律可写为,容器中的系统为二元扩散系统,设甲烷为A组分,氦为B组分dzdPRTDdzRTPdDdzdCDJAABAABAABz,A甲烷在z方向z1、z2处的分压分别为则稳态扩散时甲烷分子扩散的摩尔通量为02.0102.06.0298103.810675.0)zz()PP(RTDdzdPRTDJ634122,A1,AABAABz,A)]sm/(kmol[1045.525§3-1分子扩散基本定律三、分子扩散系数DAB可理解为沿扩散方向,在单位时间内每下降1单位浓度梯度通过单位表面积所扩散的物质质量,是表示物质扩散能力的参数。DAB的大小取决于扩散系统的压力、温度和组成的成分种类,主要依赖于实验测定。dzdCJDAz,AAB将斐克定律dzdCDJAABz,A改写成§3-1分子扩散基本定律1、气体的分子扩散系数式中,p为总压力,Pa;MA、MB为组分A、B的分子量;vA、vB为组分气体A、B在正常沸点下其液态的摩尔容积,cm3/mol。BA31B31A23ABM1M1)vv(pT7.435D对于气体混合物的分子扩散系数,可根据由气体分子运动理论所建立的半经验公式计算得到,即(3-16)近年来更精确的研究表明扩散系数随着温度变化的指数按照1.75计算,即T1.75。故如果已知温度T1、压强p1条件下的分子扩散系数D1,AB,则温度T2和压力p2条件下的分子扩散系数D2,AB可以表示为:75.11221AB,1AB,2TTppDD由上式可以看出,DAB与气体的浓度无关,并随着气体温度的升高及总压的下降而增大。(3-17)BA31B31A23ABM1M1)vv(pT7.435D§3-1分子扩散基本定律2、液体的分子扩散系数式中,MB为溶剂B的分子量,kg/kmol;B为溶剂B的粘度,Pa.s;为溶剂B的缔合因子;VbA为溶质A在正常沸点下的分子体积,cm3/mol。6.0bAB21B15ABVT)M(104.7D液体的扩散系数不仅与物质种类和温度有关,而还随溶质浓度而变化,只有稀溶液的扩散系数才可视为常数。常用的是威尔基等提出的公式:§3-1分子扩散基本定律(3-18)如果已知温度T1、溶剂粘度为B1条件下的液体扩散系数D1,AB,则可以根据下式来计算温度T2和溶剂粘度为B2条件下的液体扩散系数D2,AB:122B1B1AB,2TTDD由于液体的密度和粘度都比气体大,故溶质在溶剂中的扩散系数比气体要小约5个数量级,一般在10-9-10-10m2/s之间。§3-1分子扩散基本定律3、固体的分子扩散系数固体中的扩散与固体结构无关的遵循斐克定律的扩散与结构有关的在多孔材料内的扩散(1)、遵循斐克定律的固体中的扩散由于物质在固体中的扩散无整体流动,故其摩尔通量为:dzdCDJNAABAA(3-19)扩散系数不受压强的影响,比液体中的扩散

1 / 30
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功