重庆学校2016年学年度第二学期第二次月考八年级矩形专题姓名:_______________班级:_______________考号:_______________题号一、选择题二、填空题三、简答题总分得分一、选择题1、矩形的一条长边的中点与另一条长边构成等腰直角三角形,已知矩形的周长是36,则矩形一条对角线长是()A、B、5C、D、32、如图2,将矩形ABCD沿对角线BD对折,使点C落在C′处,BC′交AD于F,下列不成立的是()A.AF=C′FB.BF=DFC.∠BDA=∠ADC′D.∠ABC′=∠ADC′3、如图,过矩形ABCD的四个顶点作对角线AC,BD的平行线,分别相交于E,F,G,H四点,则四边形EFGH为()A.平行四边形B.矩形C.菱形D.正方形4、如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是()A.7B.8C.9D.105、如图,矩形的对角线和相交于点,过点的直线分别交和于点E、F,,则图中阴影部分的面积为()A.6B.3C.2D.16、如图,D为△ABC内部一点,E、F两点分别在AB、BC上,且四边形DEBF为矩形,直线CD交AB于G点.若CF=6,BF=9,AG=8,则△ADC的面积为多少?()A.16B.24C.36D.547、如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于()A.B.C.D.8、如图,矩形ABCD边AD沿拆痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于().A.2B.3C.4D.59、如图3,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形面积的().A.B.C.D.10、如图2,将一张矩形纸片ABCD那样折起,使顶点C落在C′处,其中AB=4,若∠C′ED=30°,则折痕ED的长为().A.4B.4C.5D.811、如图127,对于任意线段AB,可以构造以AB为对角线的矩形ACBD.连接CD,与AB交于A1点,过A1作BC的垂线段A1C1,垂足为C1;连接C1D,与AB交于A2点,过A2作BC的垂线段A2C2,垂足为C2;连接C2D,与AB交于A3点,过A3作BC的垂线段A3C3,垂足为C3……如此下去,可以依次得到点A4,A5,…,An.如果设AB的长为1,依次可求得A1B,A2B,A3B……的长,则AnB的长为(用n的代数式表示)()A.B.C.D.12、将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为()A.B.2C.3D.13、如图,将矩形纸片ABCD的四个角向内翻折,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米14、如图,在矩形ABCD中,AD>AB,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连结CN.若△CDN的面积与△CMN的面积比为1︰5,则的值为().A.2B.4C.D.15、如图,在矩形纸片ABCD中,AB=3,BC=4,现将纸片折叠压平,使A与C重合,如果设折痕为EF,那么重叠部分△AEF的面积等于()(A);(B);(C);(D).16、如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()第6题图17、如图1,在矩形中,动点从点出发,沿→→→方向运动至点处停止.设点运动的路程为,的面积为,如果关于的函数图象如图2所示,则当时,点应运动到()A.处B.处C.处D.处18、如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是()A.1B.2C.3D.419、如图,矩形A1B1C1D1的面积为4.顺次连结各边的中点得到四边形A2B2C2D2;;再顺次连结四边形A2B2C2D各边的中点得到四边形A3B3C3D3;依此类推,则四边形A8B8C8D8的面积是…()A.B.C.D.20、如图,四边形ABCD是矩形,AB=6cm,BC=8cm,把矩形沿直线BD折叠,点C落在点E处,BE与AD相交于点F,连接AE.下列结论:①△FBD是等腰三角形;②四边形ABDE是等腰梯形;③图中有6对全等三角形;④四边形BCDF的周长为;⑤AE的长为cm.其中结论正确的个数为()A.2个B.3个C.4个D.5个21、如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个二、填空题22、如图所示,矩形ABCD的长为10,宽为6,点E、F将AC三等分,则△BEF的面积是.23、如图,矩形ABCD中,AB=6,AD=8,P是BC上的点,PE⊥BD于E,PF⊥AC于F,则PF+PE=__________.24、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点,若AC=8,BD=6,则四边形EFGH的面积为_______.25、如图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B`处,又将△CEF沿EF折叠,使点C落在直线EB`与AD的交点C`处.则BC∶AB的值为__________.26、如图,在矩形ABCD中,AE⊥BD于E,∠DAE=3∠EAB,则∠ACD的度数为.27、如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在A′的位置上.若OB=,,则点A′的坐标.28、如图,矩形的对角线,,则图中五个小矩形的周长之和为_______.29、如图所示,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S2=S3+S4②S2+S4=S1+S3③若S3=2S1,则S4=2S2④若S1=S2,则P点在矩形的对角线上。其中正确的结论的序号是_________________(把所有正确结论的序号都填在横线上).30、如图,已知矩形ABCD的边AB=1,BC=3,现把矩形ABCD绕着它的对称中心旋转,若重叠部分的形状为菱形且面积为S,则S的取值范围为▲.31、如图。四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G是DF的中点,若BE=1,AG=4,则AB的长为32、如图,在平面直角坐标系中,矩形的顶点、的坐标分别为(10,0),(0,4),点是的中点,点在上运动,当是腰长为5的等腰三角形时,点的坐标为。三、简答题33、如图,在矩形ABCD中,E是AD的中点,把矩形沿BE折叠,使点A落在矩形外的一点F上,连接BF并延长交DC的延长线于点G.(1)求证:△EFG≌△EDG.(2)当DG=3,BC=2时,求CG的长.34、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形AFBD是什么四边形,并证明你的结论.35、如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连接BM、DN.(1)求证:四边形BMDN是菱形;(2)若AB=8,AD=16,求MD的长.36、如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.⑴求证:OP=OQ;⑵若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.37、把一张矩形纸片,按如下图所示操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.38、已知:如图,在边长为6cm的正方形ABCD中,动点M、N从点A分别沿边AD、AB运动至点D、B停止,动点P、Q从点C分别沿边CB、CD运动至点B、D停止,它们同时出发,设动点速度均为1cm/s,运动时间为ts,连接MN、NP、PQ、QM.(1)试说明在运动过程中,四边形MNPQ是矩形;(2)在运动过程中,当t为何值时,四边形MNPQ是正方形?(3)在运动过程中,当t为何值时,△PNB沿折痕PN翻折得到△PNB′,使得点B′恰好落在MQ上?(4)将△MNA、△PNB、△PQC、△MQD同时沿折痕MN、PN、QP、MQ翻折,得△MNA′、△PNB′△PQC′、△MQD′,若其中两个三角形重叠部分的面积为4cm2,请直接写出动点运动时间t的值.39、以四边形的边为斜边分别向外侧作等腰直角三角形,直角顶点分别为,顺次连结这四个点,得四边形.如图1,当四边形为正方形时,我们发现四边形是正方形.(1)如图2,当四边形为矩形时,请判断:四边形的形状(不要求证明);(2)如图3,当四边形为一般平行四边形时,若,①试求的度数;②求证:;③请判定四边形是什么四边形?并说明理由.40、已知:在矩形ABCD中,E为边BC上的一点,AE⊥DE,AB=12,BE=,F为线段BE上一点,EF=7,连接AF。如图1,现有一张硬纸片△GMN,∠NGM=900,NG=6,MG=,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上。如图2,△GMN从图1的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时,点P从A点出发,以每秒2个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE的交点,连接PQ。当点G到达线段AE上时,△GMN和点P同时停止运动。设运动时间为t秒,解答问题:(1)在整个运动过程中,当点G在线段AE上时,求t的值;(2)在整个运动过程中,是否存在点P,使△APQ是直角三角形,若存在,求出t的值;若不存在,说明理由。参考答案一、选择题1、A;2、B3、C.∵EH∥BD,FG∥BD,∴EH∥FG,又EF∥AC,∴四边形AEFC是平行四边形,∴EF=AC,同理GH=AC,EH=BD,FG=BD.∵在矩形ABCD中,AC=BD,∴EF=FG=GH=EH,∴四边形EFGH是菱形.4、A.5、B6、B7、B8、A9、B10、D11、C12、C;13、C14、D15、D.16、B17、C18、C解:连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,在△OBF与△CBF中∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,易证△AOE≌△COF,∴OE=OF,∴OB⊥EF,∴四边形EBFD是菱形,∴③