1有关于合理膳食问题的数学模型摘要本文对平衡膳食问题进行了研究并建立该问题的数学模型。这是一个有关于平衡膳食的食谱类的数学模型,我运用lingo软件进行求解,求出了结果并进行了灵敏度分析,通过价格的变动的出来结论。约束优化,然后可应用Lingo软件中的函数模型来进行模型的建立,我们知道Lingo中一个完整的模型由集合定义、数据段、目标函数、和约束条件等组成。本文的合理膳食题也是一个与最优化问题差不多的问题,将其优化成为一个线性规划,以每日人们摄取营养物质最少来满足最低需求,营养物质每日的摄取量以题目给出的摄取量为约束条件来进行计算,以花费最少和摄取营养物质最高为目标函数。对这个多目标函数,我采用了熵值法将多个目标组合成了一个目标,通过表格的各种约束条件一一罗列出来,然后再进行求解。将模型优化为一个线性规划,最后讲求的结果再进行分析,最终得出结论。关键词:线性规划,lingo软件,目标函数一、问题重述某疗养院营养师要为某类病人拟订一周的菜单。可供选择的蔬菜及其费用和所含营养成分的数量以及这类病人每周所需各种营养成分的最低数量如表1.2所示。另外,为了口味的需要,规定一周内所用卷心菜不多于2份,其他蔬菜不多于4份。建立数学模型回答下列问题:(1)若病人每周需要14份蔬菜,问选用每种蔬菜各多少份,可使生活费用最小。(2)当市场蔬菜价格发生怎样波动时,你的模型仍然适用。表一所需费用营养物质蔬菜每份蔬菜所含营养成分费用(元/份)铁(mg)磷(mg)VA(单位)VC(mg)烟酸(mg)青豆0.451041580.31.5胡萝卜0.4528906530.351.5花菜1.05502550530.62.4卷心菜0.42575270.150.6甜菜0.5221550.251.8土豆0.57523580.81.0每周营养最低需求量6.0325175002455.0表述:这就是一个线性规划问题。现在随着人们社会生活水平的提高,进行合理搭配膳食也是越来越受到人们的重视,人类的食物是多种多样的。各种食物所含的营养成分不完全相同。除母乳外,任何一种天然食物都不能提供人体所需的全部2营养素.平衡膳食必须由多种食物组成,才能满足人体各种营养需要,达到合理营养、促进健康的目的,因而要提倡人们广泛食用多种食物。只要对食物合理搭配,也就是每天膳食合理了,人体摄入的营养就会均衡了,也就是充分发挥了食物中的营养成份。人的营养需求就会合理的。因此本课题就是需要对人体摄取营养物质进行合理搭配。有题目可以运用lingo或者单纯形法都可以进行分析解答。二:问题分析:该问题是数学模型中的线性规划问题,根据题目所给的表格我们可以清晰的分析出一种最优化的方案。要求为了口味的需要,规定一周内所用卷心菜不多于2份,其他蔬菜不多于4份,这是本题目一个最基本的要求。再就是对表格具体进行分析,既要满足人们每周一个最合理的营养搭配,又要搭配这些食物的时候要花费的费用最小。在费用方面我们要求把每种蔬菜的价格以及所需量X相乘并进行相加,然后在需要的硬要物质方面,在把所有营养物质想家的时候一定要大于最低所需求的营养物质,对于x1,x2,x3,x4,x5,x6变量有一个具体的要求范围,进行合理的计算,如果在费用方面,在营养物质摄取方面计算的不合理就会导致费用超额,所以建立模型的过程当中就要慎重考虑这些问题,这是不可忽视的,也是建模过程能否成功的关键。在建立模型过程中我们需要引入一些变量,我们要注意变量值要为非负。三、模型假设:1:假设每周营养物质供应充足,剩余部分并不能在供应。2:假设各类蔬菜不会出现疯狂的涨价和跌价情况出现,保证费用的合理。3:假设各类蔬菜所含的营养物质不会受到外界的影响,所含的营养物质不会变。4:保证每一周的费用够用,不会出现费用短缺。四、符号约定假设各种蔬菜所需要的总费用为S青豆所需要的份数为X1;胡萝卜所需要的份数为X2;花菜所需要的份数为X3;卷心菜所需要的份数为X4;甜菜所需要的份数为X5;土豆所需要的份数为X6;蔬菜的量为Bi单价为Ci总费用为ais.taicixbicixbizi61min3表二蔬菜所需量总费用青豆X1S胡萝卜X2花菜X3卷心菜X4甜菜X5土豆X6五、模型建立所求的值就是MIN,也就是最优化结果。求解:食谱问题的数学模型为:Mins=1.5*x1+1.5*x2+2.4*x3+0.6*x4+1.8*x5+1.0*x6;S.t=1465432145,5,3,2,1240.568.0525.0415.036.0235.013.024568554273532318175006235515475325502906514153256755224253502281100.665.055.044.0305.1245.0145.0xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx解释各个条件:第一个公式是铁的含量大于等于6.0mg0.45*x1+0.45*x2+1.05*x3+0.4*x4+0.5*x5+0.5*x6=6.0;第二个公式是磷的含量大于等于325mg10*x1+28*x2+50*x3+25*x4+22*x5+75*x6=325第三个公式是VA的含量大于等于17500415*x1+9065*x2+2550*x3+75*x4+15*x5+235*x6=17500;第四个公式是VC的含量大于等于2458*x1+3*x2+53*x3+27*x4+5*x5+8*x6=245;第五个公式是烟酸的含量大于等于5.00.3*x1+0.35*x2+0.6*x3+0.15*x4+0.25*x5+0.8*x6=5.0;第六个公式是卷心菜不多于2份其他各个蔬菜的份数小于等于4份x4=2;x1=4;x2=4;x3=4;x5=4;x6=4;第七个公式是各个蔬菜的总份数加起来等于14x1+x2+x3+x4+x5+x6=14;4六、模型求解将以下公式输入到Lingo工作界面:min=1.5*x1+1.5*x2+2.4*x3+0.6*x4+1.8*x5+1.0*x6;0.45*x1+0.45*x2+1.05*x3+0.4*x4+0.5*x5+0.5*x6=6.0;10*x1+28*x2+50*x3+25*x4+22*x5+75*x6=325;415*x1+9065*x2+2550*x3+75*x4+15*x5+235*x6=17500;8*x1+3*x2+53*x3+27*x4+5*x5+8*x6=245;0.3*x1+0.35*x2+0.6*x3+0.15*x4+0.25*x5+0.8*x6=5.0;x4=2;x1=4;x2=4;x3=4;x5=4;x6=4;x1+x2+x3+x4+x5+x6=14;表三结果VariableValueReducecostSlackorsurplusDualpriceX14.0019.27-1.0X21.701.780X32.30227.60X42.006525.50X500.2640-0.18E-0.1X64.001.6750最后我们可以得到各种费用以及所需营养物质的量情况如下表所示:表四结果蔬菜所需量总费用青豆419.270胡萝卜1.7花菜2.3卷心菜2甜菜0土豆4七、结果分析依据结果分析可知:1:目标函数为19.27,即最优化方案所需要的费用为19.27.具体的情况为每周每种蔬菜所需要的份数X1,X2,X3,X4,X5,X6分别为4,1.7,2.3,2,0,4合计共14份,可使成本达到最小,最小成本为19.272:“Reducedcost”表示当变量有微小变动时,目标函数的变化率。其中当基变量的reducedcost值应为0,对于非基变量Xj,相应的reducedcost值表示当5某一个变量Xj增加一个单位时目标函数的增加量。变量X5对应的reducedcost值应为0.264,表示当非基变量X1的值从0变为1时(此时假设其他非基变量保持不变,但为了满足约束条件,基变量显然会发生变化),最有目标函数=19.27+0.264=19.5143:“Slackorsurplus”给出松弛变量的值:可以看出当X2,X3,X4都增加的时候,费用减少一元。4:“Dualprice”(对偶价格)表示当对应约束有微小变动时,目标函数的变化率其他的结果经推理都较合理。输出结果中对应于每一个约束有一个对偶价格,若其数值为P,表示对应约束中不等式右边若增加一个单位,目标函数增加P个单位。显然,如果在最优解处取等号(也就是“紧约束”也成为有效约束或者其作用约束),对偶价格才可能不是0.八.灵敏度分析Rangesinwhichthebasisisunchanged:ObjectiveCoefficientRanges:CurrentAllowableAllowableVariableCoefficientIncreaseDecreaseX11.5000000.9000000E-01INFINITYX21.5000000.27500000.1000000X32.4000006.6000000.9000000X40.60000001.332000INFINITYX51.800000INFINITY0.2640000X61.0000000.5900000INFINITYRighthandSideRanges:CurrentAllowableAllowableRowRHSIncreaseDecrease26.0000001.780000INFINITY63325.0000227.6000INFINITY417500.006525.500INFINITY5245.000050.08058115.000065.0000001.675000INFINITY72.0000001.1130352.00000084.0000000.81584052.55555694.000000INFINITY2.300000104.000000INFINITY1.700000114.000000INFINITY4.000000124.0000000.79788472.5555561314.000002.1698110.6900982(1)系数价格分析目标函数X1价格原来是1.5,允许增加到无穷大,或者允许减少=0.9000000E-01,说明它在[0,+∞]范围变化时,最优基本保持不变,由于此时约束没有变化,所以最优基本保持不变的意思就是最优解不变。对于X2来说,原来费用系数为1.5,允许增加到无穷大,或者允许减,0.275,说明它在【1.5-0.275,+∞)=【1.225,+∞)范围变化时,最优基本保持不变(2)约束中右端变化的分析第二行约束中右端原来为6,当它在【6+1.78,6-1.78】=【7.78,4.22】范围变化时,最优基本保持不变,以下几行都是这样,不过由于此时约束发生变化,最优基即使不变,最优解、最优值也会发生变化。八、模型的评价和改进1:优点:模型简单明了,具有相当的可推广性,该模型具有较大的生存空间,只需要改动少许数值便可进行推广应用,营养类和费用问题只需要进行合理的搭配,一般不会对结果造成影响,可移植性较好,运用比较灵活。2:缺点:模型考虑的影响因素较少,模型中有很多问题可以进行考虑,可以是模型更加的完善,例如每个人其实每周所需要的营养物质的量是不同的,本题目忽略了这个问题,还有问题当中的数值要一一输入,比较麻烦。73:后续工作:本例题其实还可以用单纯型法和图解法等方法进行求解,一样可以达到很好的效果。尤其是使用图解法可以是整个文变得更加清晰明了,更加直观。参考文献1数学建模方法与范例,寿纪麟等编,西安交通大学出版社,19932数学模型,濮定国、田蔚文主编,东南大学出版社,19943郎艳怀,经济数学方法教程.上海:上海财经大学