双休作业(十)1分式运算中的十二种技巧第15章分式123456789101112返回1题型分式的化简技巧1.计算:a-2+4a+2.技巧1整体通分法解:原式=a-21+4a+2=a2-4a+2+4a+2=a2a+2.2.计算:1x-2-2x-1+2x+1-1x+2.技巧2分组通分法返回解:原式=(2x+1-2x-1)+(1x-2-1x+2)=2(x-1)-2(x+1)(x+1)(x-1)+(x+2)-(x-2)(x-2)(x+2)=-4x2-1+4x2-4=-4(x2-4)+4(x2-1)(x2-1)(x2-4)=12(x2-1)(x2-4).3.计算:1x-1+1x+1+2xx2+1+4x3x4+1.技巧3顺次通分法返回解:原式=x+1x2-1+x-1x2-1+2xx2+1+4x3x4+1=2xx2-1+2xx2+1+4x3x4+1=2x(x2+1)+2x(x2-1)(x2-1)(x2+1)+4x3x4+1=4x3x4-1+4x3x4+1=4x3(x4+1)+4x3(x4-1)(x4-1)(x4+1)=8x7x8-1.4.计算:a4+a3b-a2b2-ab3a3b+ab3+2a2b2-a3-ab2a2b-b3.技巧4先约分再通分法解:原式=a(a+b)2(a-b)ab(a+b)2-a(a2-b2)b(a2-b2)=a-bb-ab=-bb=-1.返回5.计算:x+2x+1-x+3x+2+x-5x-4-x-4x-3.技巧5分离分式后通分法解:原式=x+1+1x+1-x+2+1x+2+x-4-1x-4-x-3-1x-3=1+1x+1-(1+1x+2)+1-1x-4-1-1x-3=1x+1-1x+2-1x-4+1x-3=x+2-(x+1)(x+1)(x+2)-x-3-(x-4)(x-4)(x-3)=1(x+1)(x+2)-1(x-3)(x-4)返回=(x-3)(x-4)-(x+1)(x+2)(x+1)(x+2)(x-3)(x-4)=x2-7x+12-x2-3x-2(x+1)(x+2)(x-3)(x-4)=-10x+10(x+1)(x+2)(x-3)(x-4).6.计算:(3m-2n)+(3m-2n)33m-2n+1-(3m-2n)2+2n-3m3m-2n-1.技巧6换元后通分法解:设3m-2n=x,返回则原式=x+x3x+1-x2-xx-1=x(x2-1)+x3(x-1)-x2(x2-1)-x(x+1)(x+1)(x-1)=-2x(x+1)(x-1)=2(2n-3m)(3m-2n+1)(3m-2n-1).7.计算:1x-1x(x+1)-1(x+1)(x+2)-…-1(x+2017)(x+2018).技巧7拆项相消法利用1n(n+1)=1n-1n+1返回解:原式=1x-1x-1x+1-(1x+1-1x+2)-…-(1x+2017-1x+2018)=1x-1x+1x+1-1x+1+1x+2-…-1x+2017+1x+2018=1x+2018.2题型分式的求值技巧技巧8化简后用整体代入法8.(中考·齐齐哈尔)先化简,再求值:1-2x÷x2-4x+4x2-4-x+4x+2,其中x2+2x-15=0.返回解:原式=x-2x÷(x-2)2(x+2)(x-2)-x+4x+2=x-2x·x+2x-2-x+4x+2=x+2x-x+4x+2=(x+2)2-x(x+4)x(x+2)=4x2+2x,∵x2+2x-15=0,∴x2+2x=15.∴原式=415.9.已知x1y+1z+y1x+1z+z1x+1y+3=0,且1x+1y+1z≠0,求x+y+z的值.技巧9补项后用整体代入法解:由x1y+1z+y1x+1z+z1x+1y+3=0,得xy+xz+yx+yz+zx+zy+3=0,即x+zy+1+y+zx+1+x+yz+1=0,x+y+zy+x+y+zx+x+y+zz=0.返回则有(x+y+z)1x+1y+1z=0.因为1x+1y+1z≠0,所以x+y+z=0.10.已知1a+1b=16,1b+1c=19,1a+1c=115,求abcab+bc+ac的值.技巧10变形后用整体代入法解:1a+1b=16,1b+1c=19,1a+1c=115,上面各式两边分别相加,得(1a+1b+1c)×2=16+19+115,所以1a+1b+1c=31180.易知abc≠0,所以abcab+bc+ac=abc÷abc(ab+bc+ac)÷abc=11c+1a+1b=18031.返回11.已知xx2-3x+1=-1,求x2x4-9x2+1的值.技巧11倒数求值法解:由xx2-3x+1=-1知x≠0,所以x2-3x+1x=-1.所以x-3+1x=-1,即x+1x=2.所以x4-9x2+1x2=x2-9+1x2=x+1x2-11=-7,所以x2x4-9x2+1=-17.返回12.已知4x-3y-6z=0,x+2y-7z=0,且xyz≠0,求5x2+2y2-z22x2-3y2-10z2的值.技巧12消元约分法解:以x,y为主元,将已知的两个等式化为4x-3y=6z,x+2y=7z,所以x=3z,y=2z(z≠0).所以原式=5×9z2+2×4z2-z22×9z2-3×4z2-10z2=-13.返回