第28卷第12期2008年12月光学学报v01.28,No.12December,2008ACTA0PTICASINICA文章编号:0253—2239(2008)12—2277—04基于高光谱图像技术的水果表面农药残留检测试验研究薛龙1’2黎静2刘木华2(1华东交通大学机电工程学院,江西南昌330013;2江西农业大学工学院,江西南昌330045)摘要以脐橙为研究对象,初步探讨了应用高光谱图像技术检测水果表面农药残留的方法。用蒸馏水把农药分别配置成1:20,1:100和1:1000倍的溶液。然后把同种不同浓度的溶液滴到10个洗净的脐橙表面。溶液量约为120pL,200弘L和400弘L,脐橙表面形成一个3×3的矩阵形状。将水果放置到通风阴凉处放168h后,拍摄图像。采集脐橙在625~725nm范围的高光谱图像,应用主成分分析方法(PCA)获得特征波长的图像,应用第三主成分图像(PC-3)并经过适当的图像处理方法对脐橙表面的农药残留进行检测。检测结果表明,高光谱技术对检测较高浓度农药残留非常明显。关键词医用光学与生物技术;高光谱图像;无损检测;主成分分析;农药残留文献标识码Adoi:10.3788/AOS20082812.2277中图分类号TS201.6DetectingPesticideResidueonNavelOrangeSurfacebyUsingHyperspectralImagingXueLon91LiJin92LiuMuhua2fl1SchoolofMechanicalandElectronicalEngineering,EastChinaJiaotongUniversity,Nanchang,Jiangxi330013,China1I【2EngineeringAbstractdilutedtoCollege,JiangziAgriculturalUniversity,Nanchang,Jiangxi330045,ChinaJaTheDetectionoffruitcontaminatewithpesticideresiduejSpublichealthconcern.Thepesticidewasto1;20.1:100and1:1000solutionwithdistilledwater.A3X3matrixofdilutionswasapplied10cleanedsamplewith120pL,200pLand400肛L.After168h,hyperspectralimagesinthewavelengthrangefrom625nmto725nmaretaken.Thecharacteristicwavelengthimagesareachievedbyprincipalcomponentanalysis(PCA).Combiningthe3rdprincipalcomponent(PC)imageresidueonnavelorange.Thisresearchshowsthattheonproper.砷ageprocessingmethodsdetectstechnologyofhyperspectralimagingcanbeusedwiththepesticidetoeffectivelydetectpesticideresidueKeywordsfruitsurface.andbiotechnology;hyperspectralimaging;non—destructive;principalcomponentmedicalopticsanalysis;pesticideresidue1引言用价值的[h引。王玉田等[3]运用荧光光谱检测出水果表面残留的农药。胡淑芬等H3运用激光技术对水果表面农药残留进行了试验研究。肖怡琳等D1采用激光拉曼光谱检测技术和激光诱导荧光技术对多种农药进行了检测。周小芳等[6]应用不同波长激光光源研究水果表面农药残留的拉曼检测。MoonS.Kim随着人们生活水平的提高,健康环保意识的增强,消费者越来越关注果蔬的质量安全问题,其中果蔬表面的农药残留问题尤其备受关注。果蔬表面的农药残留不仅会危害消费者的健康,而且还会影响果蔬的出口贸易。虽然对农药检测已经有了许多成熟可行的方法,但现行方法大都费时、速度慢,而且是破坏性的检测。无损检测具有快速、简便、在线检测等特点,所以研究农药残留无损检测的方法是非常有实收稿日期:2008—07—20;收到修改稿日期:2008—09—26基金项目:国家自然科学基金(30760101)资助项目。等[7]应用荧光光谱图像检测苹果表面的污染物。AlanM.Lefcourt等Es~t03应用激光诱导荧光多光谱图像技术检测出水果表面的各种粪便污染物。作者简介:薛龙(1977一),男,硕士,讲师,主要从事机械工程方面的研究。E-mail:ultimata@163.corn导师简介:刘木华(1969--),男,博士,教授,主要从事农产品品质无损检测和光谱图像等方面的研究。E-mail:suikelmh@sohu.corn(通信联系人)万方数据光学高光谱图像技术结合了光谱分析和图像处理的技术优势,对研究对象的内外部品质特征进行检测分析,赵杰文等[Iu利用高光谱图像技术检测水果轻微损伤,准确率为88.57%,JasperG.Tallada等[12 ̄141分别应用高光谱图像技术对不同成熟度的草莓表面损伤、苹果的表面缺陷及芒果的成熟度检测进行了试验研究。I.Kim等n5]应用高光谱设备采集荧光图像检测鸡肉品质,准确率达到76%。本文采用高光谱图像技术检测水果表面农药残留,并通过数字图像数据处理方法寻求能准确辨别水果表面农药残留的最佳波长图像,为实现对水果的无损快速在线检测技术提供依据。2试验材料与方法2.1试验材料以江西赣南脐橙为研究对象。所用的农药是杜邦万灵(LANNATEL)牌,有效成分是24%灭多威(Methomyl)可溶性液剂,属于氨基甲酸酯类杀虫剂。用蒸馏水把农药分别配置成1:20,1:100和1:1000倍的溶液。然后用滴管,把同种不同浓度的溶液滴到洗净的脐橙表面,在脐橙表面形成一个3×3的矩阵形状(图1)。图中从左到右农药溶液量约为120弘L,200弘L和400肛L,共10个脐橙。将水果放置到通风阴凉处放168h后,拍摄图像。图1农药样品在水果表面的布置Fig.1Schematicillustrationofsampletreatments图2高光谱图像采集系统示意图Fig.2schema‘icdiagramofhyperspectralimagingsystem万方数据学报28卷2.2试验装置试验的高光谱图像数据是基于光谱仪的高光谱图像系统采集得到的。图2为高光谱图像采集系统示意图,由1台CMOS照相机(Photonfocus,瑞士),1台行扫描光谱摄制仪(ImSpectorV10E),250W的光纤卤素灯(ALPHA-1501,21v/zsoWHalogenTugstenLamp)和一套输送装置等部件组成。光谱范围425~725nm,光谱分辨率为3nm。2.3数据采集与预处理成像光谱仪是将影像传感器的空间表述同光谱仪的分析能力结合在一起。它们有几百个狭窄波谱通道,因此成像光谱仪为影像中的每一个像元提供完整的波谱曲线。图3为典型高光谱图像,其中z,Y代表某一波长下的像元坐标信息,第三维是A代表波长信息,因此高光谱图像也称之为高光谱立方或高光谱数据立方。图3高光谱图像不意图Fig.3Hyperspectralimagingcube高光谱图像数据的采集使用SpectralCube(SpectralImagingLtd.,Finland)软件平台,预先确定好相机的曝光时间与平台移动速度,以确保图像清晰,最终获得300×400×350的高光谱图像;数据的处理采用ENVIV4.3(ResearchSystem,Inc.,USA)和MATLAB(Mathworks,Matlab7.1,Inc.,USA)。由于摄像头中暗电流的存在以及水果表面形状的不同,光强分布较弱波段下的图像噪声的影响较大,因此必须对图像进行预处理,以消除部分噪声的影响。在与采集样品相同的条件下,盖上镜头盖进行样品的采集,得到一个全黑的图像B。然后对采集样品图像A进行预处理得到图像,r—A—B.(1)3结果与讨论在稀释浓度分别为1:20,1:100,1:1000倍溶液和没有涂抹农药的表面的高光谱图像中,取矩形的12期薛龙等:基于高光谱图像技术的水果表面农药残留检测试验研究感兴趣区域(ROI),然后计算这些像素在每一个波长下ROI的平均值,光谱曲线如图4所示。可以看出,在425~575nm范围内,稀释倍数分别为1:100,1:1000的溶液和没有涂抹农药的表面的光谱曲线几乎重合,在后续数据处理时不采用这段范围。在625~725m范围内,上述四条光谱曲线差别明显,因此实验所选定的波长范围是625~725啪。还可看出,在425~575m波段范围内,涂有1:20农药的光谱曲线明显高于其他光谱曲线,因此该波段范围可以较容易地检测出高浓度氨基类农药的残留。600500l:1Qoo景400》翟300U。No蚕200;。I.~『'澎§\1:1000一一一一。、’,-,√~:+_“_。~万方数据图5涂有氨基类农药的脐橙主成分分析的前4个主成分图像Fig.5Principalcomponent(PC)imagesfromthe1sttO4thofthenavelorangesobtainedbyprincipalcomponentanalysis(PCA)中值滤波,然后通过合适的阈值分割PC-2和PC一3图像得到二值图像,最后完成水果表面农药残留的特征提取。分割后PC一2和PC-3主成分图像的二值图如图6所示,图中箭头代表检测的误检点。虽然该二值图像没有明显地检测出全部1:1000农药所在的位置,但是PC-3的二值图像对1:20和1:100农药所在的位置的检测非常明显,误检点也比PC-2少很多。表1是应用PC一3图像的检测结果,可见对高浓度氨基甲酸酯类农药溶液的检测准确率很高。图6分割后的二值图像Fig.6Binaryimagesfordetectionspots表1应用PC-3图像检测结果Table1ResultsofdetectingspotsonnavelorangesSolutionDerectedratio1:20100%11100100%1:100013%每一个单独的PCA图像都是由一些显著波长线性组合而成的。图7是根据PC-2和PC-3图像的特征向量绘制的图像光谱曲线权重系数图,图中每一处波峰和波谷都代表了一个显著波长,644nm与714nm是PC-2的特征波长,631nm,644nm,655姗,2280光学676nm,698nm和715nm是PC-3的特征波长。Wavelength2/nm图7PC一2和PC一3图像光谱曲线权重系数Fig.7SpectralweightingcoefficientsforPC一2andPC一3图8分别给出了这几个特征波长下脐橙的灰度图像,可以看出图中除676nm波长下的图像外,其余图像都较明显地检测到涂有1:20和1:100倍溶液农药的污染点。在实际应用中,通过确定几个特征波长,根据这些波长图像和权重系数分别生成与PC一2和PC一3图像相似的图像。就可以采用一个多光谱图像采集系统来实现水果表面农药残留的快速在线无损检测。图8不同波长下的灰度图像Fig.8Spectralimagesatdifferentwavelengths4结论应用高光谱图像技术对水果表面农药残留的检测进行了初步研究。应用主成分分析方法对所获得的高光谱图像进行分析,并找出特征波长下的图像。应用这些特征图像,经过图像处理技术,可以检测出水果表面农药残留,特别对较高浓度农药残留的检测。但对低浓度农药检测还没有精确的辨认。实验结果表明,基于高光谱图像检测技术可以检测出水果表面的农药残