华东师大初中数学八年级下册《函数及其图象》全章复习与巩固—知识讲解(提高)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

《函数及其图象》全章复习与巩固—知识讲解(提高)【学习目标】1.理解变量与常量、变量与函数、直角坐标系、函数图象、平面直角坐标系的概念,能正确画出平面直角坐标系,根据坐标确定点,以及由点求出坐标,掌握点的坐标的特征;2.了解函数的三种表示方法(列表法、解析式法和图象法),能利用图象数形结合地分析简单的函数关系;3.理解正比例函数和一次函数的概念,会画它们的图象,能结合图象讨论这些函数的基本性质,能用待定系数法确定一次函数与反比例函数的解析式;4.能写出实际问题中一次函数关系与反比例函数关系的解析式及自变量的取值范围,并能应用它们解决简单的实际问题;运用数形结合的方法,深刻理解和掌握函数的性质,学会用数学建模的方法与技巧.【知识网络】【要点梳理】要点一、变量与函数1.常量、变量、函数(1)常量:在问题研究过程中,取值始终保持不变的量,叫做常量.(2)变量:在某一变化过程中,可以取不同数值的量,叫做变量.(3)函数:一般地,在一个变化过程中.如果有两个变量x与y,对于x的每一个值,y都有唯一的值与之对应,那么我们就说x是自变量,y是因变量,也称y是x的函数.y是x的函数,如果当x=a时y=b,那么b叫做当自变量为a时的函数值.函数的表示方法有三种:解析式法,列表法,图象法.要点二、平面直角坐标系1.有序数对定义:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.2.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.3.点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.要点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3)对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.4.坐标平面(1)象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.要点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.(2)坐标平面的结构坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限.这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.5.坐标的特征(1)各个象限内和坐标轴上点的坐标符号规律要点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.(2)象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).(3)关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为(a,-b);P(a,b)关于y轴对称的点的坐标为(-a,b);P(a,b)关于原点对称的点的坐标为(-a,-b).(4)平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.要点三、一次函数1、一次函数的定义一次函数的一般形式为ykxb,其中k、b是常数,k≠0.特别地,当b=0时,一次函数ykxb即ykx(k≠0),是正比例函数.2、一次函数的图象如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.要点诠释:直线ykxb可以看作由直线ykx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).说明通过平移,函数ykxb与函数ykx的图象之间可以相互转化.3、一次函数的性质掌握一次函数的图象及性质(对比正比例函数的图象和性质)要点诠释:理解k、b对一次函数ykxb的图象和性质的影响:(1)k决定直线ykxb从左向右的趋势(及倾斜角的大小——倾斜程度),b决定它与y轴交点的位置,k、b一起决定直线ykxb经过的象限.(2)两条直线1l:11ykxb和2l:22ykxb的位置关系可由其系数确定:12kk1l与2l相交;12kk,且12bb1l与2l平行;12kk,且12bb1l与2l重合;(3)直线与一次函数图象的联系与区别一次函数的图象是一条直线;特殊的直线xa、直线yb不是一次函数的图象.4、求一次函数的表达式待定系数法:先设待求函数表达式(其中含有待定系数),再根据条件列出方程或方程组,求出待定系数,从而得到所求结果的方法,叫做待定系数法.5、用函数的观点看方程(组)与不等式方程(组)、不等式问题函数问题从“数”的角度看从“形”的角度看求关于x、y的一元一次方程axb=0(a≠0)的解x为何值时,函数yaxb的值为0?确定直线yaxb与x轴(即直线y=0)交点的横坐标求关于x、y的二元一次方程组1122,.yaxbyaxb的解.x为何值时,函数11yaxb与函数22yaxb的值相等?确定直线11yaxb与直线22yaxb的交点的坐标求关于x的一元一次不等式axb>0(a≠0)的解集x为何值时,函数yaxb的值大于0?确定直线yaxb在x轴(即直线y=0)上方部分的所有点的横坐标的范围要点四、反比例函数1.反比例函数的定义一般地,形如kyx(k为常数,0k)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.反比例函数解析式的确定方法是待定系数法.由于反比例函数kyx中,只有一个待定系数k,因此只需要知道一对xy、的对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.要点诠释:在kyx中,自变量x的取值范围是,kyx()可以写成()的形式,也可以写成的形式.2.反比例函数的图象和性质(1)反比例函数图象反比例函数0kykx的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交.要点诠释:观察反比例函数的图象可得:x和y的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.①)0(kxky的图象是轴对称图形,对称轴为xyxy和两条直线;②)0(kxky的图象是中心对称图形,对称中心为原点(0,0);③xkyxky和(k≠0)在同一坐标系中的图象关于x轴对称,也关于y轴对称.注:正比例函数xky1与反比例函数xky2,当021kk时,两图象没有交点;当021kk时,两图象必有两个交点,且这两个交点关于原点成中心对称.(2)反比例函数的性质①图象位置与反比例函数性质当0k时,xy、同号,图象在第一、三象限,且在每个象限内,y随x的增大而减小;当0k时,xy、异号,图象在第二、四象限,且在每个象限内,y随x的增大而增大.②若点(ab,)在反比例函数kyx的图象上,则点(ab,)也在此图象上,故反比例函数的图象关于原点对称.③正比例函数与反比例函数的性质比较正比例函数反比例函数解析式图像直线有两个分支组成的曲线(双曲线)位置0k,一、三象限;0k,二、四象限0k,一、三象限0k,二、四象限增减性0k,y随x的增大而增大0k,y随x的增大而减小0k,在每个象限,y随x的增大而减小0k,在每个象限,y随x的增大而增大④反比例函数y=中k的意义过双曲线xky(k≠0)上任意一点作x轴、y轴的垂线,所得矩形的面积为k.过双曲线xky(k≠0)上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k.要点五、实践与探索1.数学建模的一般思路数学建模的关键是将实际问题数学化,从而得到解决问题的最佳方案、最佳策略.在建模的过程中,为了既合乎实际问题又能求解,这就要求在诸多因素中抓住主要因素进行抽象化简,而这一过程恰是我们的分析、抽象、综合、表达能力的体现.函数建模最困难的环节是将实际情景通过数学转化为什么样的函数模型.2.正确认识实际问题的应用在实际生活问题中,如何应用函数知识解题,关键是建立函数模型,即列出符合题意的函数解析式,然后根据函数的性质综合方程(组)、不等式(组)及图象求解.要点诠释:要注意结合实际,确定自变量的取值范围,这是应用中的难点,也是中考的热门考点.3.选择最佳方案问题分析问题的实际背景中包含的变量及对应关系,结合一次函数的解析式及图象,通过比较函数值的大小等,寻求解决问题的最佳方案,体会函数作为一种数学模型在分析解决实际问题中的重要作用.【典型例题】类型一、函数的概念1.求函数的自变量的取值范围.【思路点拨】要使函数有意义,需或解这个不等式组即可.【答案与解析】解:要使函数有意义,则x要符合:2101xx即:或解方程组得自变量取值是或.【总结升华】自变量的取值范围是使函数有意义的x的集合.举一反三:【变式】求出下列函数中自变量x的取值范围(1)01xyx(2)|2|23xxy(3)2332yxx【答案】解:(1)要使01xyx有意义,需010xx,解得x≠0且x≠-1;(2)要使|2|23xxy有意义,需32020xx,解得223xx且;(3)要使2332yxx有意义,需230320xx,解得32x.类型二、平面直角坐标系2.平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(-3,-1),B(1,3),C(2,-3).求△ABC的面积.【思路点拨】三角形的三边都不与坐标轴平行,根据平面直角坐标系的特点,可以将三角形的面积转化为梯形或长方形的面积减去多余的直角三角形的面积,即可求得此三角形的面积.【答案与解析】解:如图所示,过点A、C分别作平行于y轴的直线与过B点平行于x轴的直线交于点D、E,则四边形ACED为梯形,根据点A(-3,-1)、B(1,3)、C(2,-3)可求得AD=4,CE=6,DB=4,BE=1,DE=5,所以△ABC的面积为:111()222ABCSADCEDEADDBCEBE△111(46)5446114222.【总结升华】点的坐标能体现点到坐标轴的距离,解决平面直角坐标系中的三角形面积问题,就是要充分利用这一点,将不规则图形转化为规则图形,再利用相关图形的面积计算公式求解.举一反三:【变式】如图所示,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),……,则点A2008的坐标为________.【答案】(-502,-502).类型三、一次函数3.如图,直线ykxb经过A(-2,-1)和B(-3,0)两点,则不等式组102xkxb的解集为.【答案】32x;【解析】从图象上看,ykxb的图象在

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功