/FRP/CM2012.No.31*121.3100122.311106、、、。。1ANSYS。。TB332TK8A1003-0999201203-0003-042011-12-141984-、。。1.5~2MW。2。。11。、、、、。1.1300g/m2、450g/m2CSM900g/m20°90°WovenFabricPVC。VDI20143。、、、、、4~6。0°90°、0°90°、0°90°、0°90°、0°90°、0°90°、0°90°、78。。1.2ANSYSSolidworksANSYS。。、。。83DShell181255。。ANSYSWorkbench13.0。NamedSelec-320123FRP/CM2012.No.3tion。12。1Fig.1Nacelletopbasiclayuparea2Fig.2CoordinatesystemofthenacelletopANSYSxz。910。。03。3Fig.3DroppedstructurelayupWorkbench。22.1GL111.05。。wsk=12ρ·V2wind·A·cw1q=wskA=12·ρ·v2wind·cw2ρvwind50cw1。1Table1Simplifiedcwvaluesassumedforanacellecw+0.8-0.5-0.6cwGL10%cw20%。2.21。2。p=γ·psk=1.5×3=4.5kN/m2。。20×20cm1.5kN。3p=γF·psk=1.5×3=4.5kN/m2。。2.320kN。33.1GL115.5.11420125/FRP/CM2012.No.3Sd≤Rk/γMx=Rd3SdRkγMxRd=Rk/γMx。γMxγMx=γM0·ΠiCix=2.414γM0=1.35C1a=1.35C2a=1.1C3a=1.2。。3.2。1.05q=4.5kPa。14.4mm、14.4mm+5mm14.4mm+140mmPVC+5mm。ANSYSxySd。1010。10x、y、2。210Table2Thetop10layersstressesLayers&MaterialsSx/MPaSy/MPamaxminmaxminRk/γMx=Rd/MPaγsxyLayer1CSM_30043.91-8.62811.057-6.39551.8718.13%369.11%Layer2CSM_30043.753-8.49310.55-6.07051.8718.55%391.66%Layer3WF67.266-12.40913.935-10.905117.8475.19%745.64%Layer4WF66.581-11.85313.624-10.80117.8476.99%764.94%Layer5CSM_45048.201-8.5289.860-5.50258.5121.39%493.41%Layer6PVCCore0.332-0.66e-10.64e-1-0.36e-10.75125.90%1071.88%Layer7WF63.107-13.05712.051-10.27117.8486.73%877.84%Layer8WF62.422-13.70711.741-10.166117.8488.78%903.66%Layer9WF61.737-14.35611.43-10.74117.8490.87%930.97%Layer10CSM_45044.676-11.6598.204-9.7658.5130.97%613.19%SxSyxySd12。RdRdCSM_300=125/2.41=51.87MPaRdCSM_450=141/2.41=58.51MPaRdWF=284/2.41=117.84MPaRdPVCCore=1.8/2.41=0.75MPaγs=Rd-|Sd|Sd×100%52103xx18.13%。4。4Fig.4ThelocationoftheMaxstressonthefirstlayeroftopnacelle。。13520123FRP/CM2012.No.31。。。14。2。。。15。41、。23。、。、、。1.M.2006.2.、M.2010.3VDI2014part3.DevelopmentofFiber-ReinforcedPlasticscompo-nentsAnalysisS.September2006.4GB/T1447-2005S.5GB/T1448-2005S.6GB/T1463-2005S.7GB/T3355-2005S.8.-J./2009546-48.9.ANSYS11.0M.2008.10.J./2011120-23.11GermanischerLloydRulesandregulationsIV-IndustrialServicesPart1-GuidelineforCertificationofWindTurbinesS.12.3DSEC-W01-1250、J./2010163-66.13.J./2009650-53.14.D.2008.15.M.2007.STRENGTHANALYSISANDDESIGNOFMEGAWATTWINDTURBINENACELLECOVERLIChao1*SHENFeng-ya1YUGuo-cheng21.ZhejiangWindeyCo.Ltd.Hangzhou310012China2.StateKeyLaboratoryofWindPowerSystemHangzhou311106ChinaAbstractCompositematerialshavesomeexcellentperformancessuchashighratioofspecificstrengthhighmodulusratioeasilydesigningandfabricatinglowercostetc.Soitisthefirstoptionforthewindturbinena-celle.Thetechnologyaboutnacelledesignandfabricationisalreadymaturedinthedomesticbynow.Howevertherestillexistsagaponcomparisonwithsomeforeigncountriesinsometechnicalskillssuchasstrengthcalculationandproductcertification.Basedontheclassiclaminatetheorythepapercalculatestheextremestrengthforacer-tainnacellecoverbyusingtheFEsoftwareANSYS.Itcanbeconcludedsomeguidelinemethodsofthecompositestructuraldesignandlaminatelayupstrategyfromtheanalysisresults.Thetestsdemonstratethatthismethodissim-pleandpracticable.Itprovidesreferenceforthewindturbinedesigner.Keywordswindturbinenacellecovercompositematerialfiniteelementmethod620125