金属热处理知识点

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1热处理的目的、分类、条件;定义:通过加热、保温和冷却的方法,使金属的内部组织结构发生变化,从而获得所要求的性能的一种工艺方法。目的:1、消除毛坯中的缺陷,改善工艺性能,为切削加工或热处理做组织和性能上的准备。2、提高金属材料的力学性能,充分发挥材料的潜力,节约材料延长零件使用寿命。分类:特点:热处理区别于其他加工工艺如铸造、压力加工等的特点是只通过改变工件的组织来改变性能,而不改变其形状。热处理条件:(1)有固态相变发生的金属或合金(2)加热时溶解度有显著变化的合金热处理过程中四个重要因素:(1)加热速度V;(2)最高加热温度T;(3)保温时间h;(4)冷却速度Vt.2什么是铁素体、奥氏体、渗碳体?其结构与性能;Ac1、Ar1、Ac3、Ar3、Accm、Arcm临界温度的意义;奥氏体的形成条件;奥氏体界面形核的原因/条件;以共析钢为例,详细分析奥氏体的形成机理;影响奥氏体转变速度的因素;影响奥氏体晶粒长大的因素;铁素体:碳溶于α-Fe中形成的间隙固溶体,以F或α表示;结构:体心立方结构;组织:多边形晶粒性能:铁素体的塑性、韧性很好(δ=30~50%、aKU=160~200J/cm2),但强度、硬度较低(σb=180~280MPa、σs=100~170MPa、硬度为50~80HBS)。其力学性能几乎与纯铁相同。奥氏体γ-Fe中的间隙固溶体;用A或γ表示结构:面心立方晶格性能:奥氏体常存在于727℃以上,是铁碳合金中重要的高温相,强度和硬度不高,但塑性和韧性很好(σb≈400MPa、δ≈40~50%、硬度为160~200HBS),易锻压成形。钢材热加工都在γ区进行。组织:多边形等轴晶粒,在晶粒内部往往存在孪晶亚结构渗碳体:铁与碳形成的金属化合物,是钢铁中的强化相,高温下可分解,Fe3C→3Fe+C(石墨)。结构:复杂斜方性能:渗碳体中碳的质量分数为6.69%,熔点为1227℃,硬度很高(800HBW),塑性和韧性极低(δ≈0、aKU≈0),脆性大。渗碳体是钢中的主要强化相,其数量、形状、大小及分布状况对钢的性能影响很大。由于碳在α-Fe中的溶解度很小,因而常温下碳在铁碳合金中主要以Fe3C或石墨的形式存在。五个重要的成份点:P、S、E、C、F。四条重要的线:ECF、ES、GS、PSK。三个重要转变:包晶转变反应式、共晶转变反应式、共析转变反应式。两个重要温度:1148℃、727℃。奥氏体1.奥氏体γ-Fe中的间隙固溶体;用A或γ表示结构:面心立方晶格组织:多边形等轴晶粒,在晶粒内部往往存在孪晶亚结构性能:奥氏体常存在于727℃以上,是铁碳合金中重要的高温相,强度和硬度不高,但塑性和韧性很好(σb≈400MPa、δ≈40~50%、硬度为160~200HBS),易锻压成形。钢材热加工都在γ区进行。室温不稳定相高塑性、低屈服强度(利用奥氏体量改善材料塑性)顺磁性能(测残余奥氏体和相变点)线膨胀系数大(应用于仪表元件)导热性能差(耐热钢)比容最小(利用残余奥氏体量减少材料淬火变形)2.Ac1、Ar1、Ac3、Ar3、Accm、Arcm临界温度的意义Ac1——加热时珠光体向奥氏体转变的开始温度;Ar1——冷却时奥氏体向珠光体转变的开始温度;Ac3——加热时先共析铁素体全部转变为奥氏体的终了温度;Ar3——冷却时奥氏体开始析出先共析铁素体的温度;Accm--加热时二次渗碳体全部溶入奥氏体的终了温度Arcm——冷却时奥氏体开始析出二次渗碳体的温度3.奥氏体的形成条件过热(TA1)4.奥氏体界面形核的原因/条件(1)易获得形成A所需浓度起伏,结构起伏和能量起伏.(2)在相界面形核使界面能和应变能的增加减少。△G=-△Gv+△Gs+△Ge△Gv—体积自由能差,△Gs—表面能,△Ge—弹性应变能相界面△Gs、△Ge较小,更易满足热力学条件△G0.5.以共析钢为例,详细分析奥氏体的形成机理(1)奥氏体的形核球状珠光体中:优先在F/Fe3C界面形核片状珠光体中:优先在珠光体团的界面形核,也在F/Fe3C片层界面形核(2)奥氏体的长大片状珠光体:奥氏体向垂直于片层和平行于片层方向长大.球状珠光体:奥氏体的长大首先包围渗碳体,把渗碳体和铁素体隔开,然后通过A/F界面向铁素体一侧推移,A/Fe3C界面向Fe3C一侧推移,使F和Fe3C逐渐消失来实现长大的.A长大方向基本垂直于片层和平行于片层。A平行于片层长大速度垂直于片层长大速度(3)残余碳化物的溶解残余碳化物:当F完全转变为A时,仍有部分Fe3C没有转变为A,称为残余碳化物。∵①A/F界面向F推移速度A/Fe3C界面向Fe3C推移速度②刚形成的A平均含碳量P含碳量残余碳化物溶解:由Fe3C中的C原子向A中扩散和铁原子向贫碳Fe3C扩散,Fe3C向A晶体点阵改组实现的.(4)奥氏体的均匀化奥氏体的不均匀性:即使Fe3C完全溶解转变为奥氏体,碳在奥氏体中的分布仍然不均匀,表现为原Fe3C区域碳浓度高,原F区碳浓度低。奥氏体的均匀化:随着继续加热或继续保温,以便于碳原子不断扩散,最终使奥氏体中碳浓度均匀一致。6.影响奥氏体转变速度的因素温度、成分、原始组织1、温度的影响T↗,I↗,G↗,且I↗G↗各种因素中,T的影响作用最强烈2、原始组织的影响片状P转变速度球状P薄片较厚片转变快3、碳含量的影响C%↗,A形成速度↗4、合金元素的影响(1)对A形成速度的影响改变临界点位置;影响碳在A中的扩散系数;合金碳化物在A中溶解难易程度的牵制;对原始组织的影响(2)对A均匀化的影响合金钢需要更长均匀化时间7.影响奥氏体晶粒长大的因素(1)加热温度和保温时间随加热温度升高,奥氏体晶粒长大速度成指数关系迅速增大。加热温度升高时,保温时间应相应缩短,这样才能获得细小的奥氏体晶粒。(2)加热速度:加热速度快,奥氏体实际形成温度高,形核率增高,由于时间短奥氏体晶粒来不及长大,可获得细小的起始晶粒度(3)钢的碳含量的影响碳在固溶于奥氏体的情况下,由于提高了铁的自扩散系数,将促进晶界的迁移,使奥氏体晶粒长大。共析碳钢最容易长大。当碳以未溶二次渗碳体形式存在时,由于其阻碍晶界迁移,所以将阻碍奥氏体晶粒长大。过共析碳钢的加热温度一般选在Ac1----Accm两相区,为的就是保留一定的残留渗碳体。(4)合金元素的影响Mn,P促进奥氏体晶粒长大:Mn----在奥氏体晶界偏聚,提高晶界能;P----在奥氏体晶界偏聚,提高铁的自扩散系数。强碳氮化物形成元素Ti,Nb,V形成高熔点难溶碳氮化物(如TiC,NbN),阻碍晶界迁移,细化奥氏体晶粒。(5)冶炼方法用Al脱氧,可形成AlN----本质细晶粒钢用Si、Mn脱氧----本质粗晶粒钢(6)原始组织主要影响A的起始晶粒。原始组织越细,起始晶粒越细小。但晶粒长大倾向大,即过热敏感性增大,不可采用过高的加热温度和长时间保温,宜采用快速加热、短时保温的工艺方法。3何谓过冷奥氏体,过冷奥氏体等温转变曲线,转变产物;珠光体的组织形态和性能;珠光体的转变机理与影响因素;1.珠光体的组织形态和性能组织形态:层片状、粒状、其他片状珠光体:其F、Fe3C呈层状分布重量比:F:Fe3C=8:1珠光体的存在:钢的退火或正火组织中力学性能:片间距↘,强度和硬度↗,同时塑性和韧性有所改善粒状珠光体:在铁素体基体上分布着粒状渗碳体的两相机械混合物称为粒状珠光体。粒状珠光体一般经球化退火而得到,也可以通过淬火加回火处理得到。性能:Fe3C细小,分布均匀,则强度、硬度较高,韧性也↗。与同成分片状P相比:强度硬度稍低,塑韧性较高粒状珠光体的力学性能主要取决于渗碳体颗粒的大小、形态与分布。2.何谓过冷奥氏体过冷奥氏体——处于临界温度之下暂时存在的奥氏体。3.过冷奥氏体等温转变曲线,转变产物4.珠光体的转变机理与影响因素一.片状珠光体的转变机理两个基本过程:形核+长大(1)珠光体的形核(i)领先相与化学成分有关亚共析钢:F过共析钢:Fe3C共析钢:两者均可,一般认为是Fe3C(ⅱ)珠光体形核位置领先相大多在奥氏体晶界或相界面(奥氏体与先共析相界面)上形核。因为这些区域缺陷较多,能量较高,原子容易扩散,容易满足形核所需要的成分起伏、能量起伏和结构起伏的条件。长大:扩散进行长大方式:纵向长大,沿着珠光体片长轴方向长大;横向长大,沿着珠光体片垂直方向长大。二、粒状珠光体的形成机制粒状珠光体可通过球化退火和马氏体组织回火得到。三、亚(过)共析钢的珠光体转变由偏离共析成分的过冷奥氏体所形成的珠光体称为伪共析体或伪珠光体。影响因素:一、奥氏体成分与组织(1)碳含量共析成分的C曲线最靠右(共析A最稳定),成分偏离共析点,C曲线将左移(先析相的析出,降低过冷A的稳定性)。成分偏离共析点越多,C曲线左移越多。(2)奥氏体晶粒度晶粒细小,可促进P转变(3)奥氏体成分不均匀性成分不均匀,有利形核,加速P转变(4)合金元素除了Co,大部分使C曲线右移,降低P的转变二、外界条件(1)加热温度和保温时间加热T低,保温t短,将加速P转变(2)应力和变形拉应力和变形均加速转变4马氏体的定义:晶体结构、组织形态、性能;马氏体具有高硬度、高强度的本质;Ms、Mf点;影响Ms点的主要因素;马氏体的形成条件与转变特点;1.马氏体的定义:马氏体是C在α-Fe中的过饱和间隙式固溶体。具有体心立方点阵(C%极低钢)或体心正方(淬火亚稳相)点阵。马氏体相变:钢铁在经过奥氏体化温度后采取快速冷却,抑制其扩散分解,在较低温度(<Ms)下发生的无扩散型相变。晶体结构:体心正方晶格(a=b≠c)轴比c/a——马氏体的正方度钢中马氏体的本质:马氏体是碳溶于α-Fe中的过饱和间隙式固溶体,记为M或α'。其中的碳择优分布在c轴方向上的八面体间隙位置。这使得c轴伸长,a轴缩短,晶体结构为体心正方。其轴比c/a称为正方度,马氏体含碳量愈高,正方度愈大。马氏体的晶体结构类型(两种):体心立方结构(WC0.2%)体心正方结构(WC0.2%)组织形态:板条,片状,蝴蝶状、薄板状及薄片状性能:一.马氏体的强度和硬度钢中马氏体的主要特性是高硬度和高强度。马氏体高强度高硬度的本质①相变强化马氏体相变的切变特性,造成马氏体晶体内产生大量的微观缺陷(位错、孪晶、层错等)使马氏体强化,称为相变强化。②固溶强化马氏体中以间隙式溶入过饱和碳原子将引起强烈点阵畸变,形成以碳原子为中心应力场,并与位错发生交互作用,使碳原子钉扎位错,强化马氏体。③马氏体时效强化马氏体发生碳原子偏聚和析出,从而产生时效强化。二.马氏体的塑性和韧性(1)韧性马氏体的韧性主要决定于亚结构。C%:0.4%,高韧性0.4%,韧性低,硬而脆。仅从韧性考虑,含C量不宜0.4%(2)马氏体的相变诱发塑性在马氏体转变过程中塑性有所增加-----马氏体的相变诱发塑性。2.马氏体的形成条件与转变特点;马氏体的形成条件:(1)快冷VVc避免A向P、B转变(2)深冷TMS提供足够的驱动力转变特点:(1)、表面浮凸效应和共格切变表面浮凸效应——切变使马氏体表面出现一边凹陷、一边凸起,并带动附近奥氏体也发生弹性切变。马氏体转变以切变方式进行——界面上原子为马氏体与奥氏体共有。(2)无扩散相变(3)M转变的位向关系及惯习面位向关系相变时,整体相互移动一段距离,相邻原子的相对位置无变化。作小于一个原子间距位置的位移,因此奥氏体与马氏体保持一定的严格的晶体学位向关系。位向关系有:(1)K—S关系(2)西山(N)关系(3)G—T关系惯习面:马氏体是在母相的一定晶面上开始形成的,这个晶面就是惯习面。(4)马氏体转变不完全性(非恒温性)(5)马氏体转变的可逆性3.Ms、Mf点马氏体转变开始的温度称上马氏体点,用Ms表示。马氏体转变终了温度称下马氏体点,用Mf表示.4.影响Ms点的主要因素1)化学成分(1)C%影响C%的影响最为明显。C%升高,Ms和Mf均下降,马氏体转变温度区间移向低温,残余奥氏体量增加。C%增加,Ms呈连续下降趋势,当C%<0.6%时,Ms下降比Mf下降显著,当C%增加到C%≥0.6%时,Mf下降缓慢直至基本不变。2)合金元

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功