LogicProgrammingandKnowledgeRepresentationChittaBaralandMichaelGelfondComputerScienceDepartmentUniversityofTexasatElPasoElPaso,Texas79968fchitta,mgelfondg@cs.ep.utexas.eduJanuary24,1994AbstractInthispaper,wereviewrecentworkaimedattheapplicationofdeclarativelogicprogrammingtoknowledgerepresentationinarti cialintelligence.Weconsiderexten-sionsofthelanguageofde nitelogicprogramsbyclassical(strong)negation,disjunc-tion,andsomemodaloperatorsandshowhoweachoftheaddedfeaturesextendstherepresentationalpowerofthelanguage.Wealsodiscussextensionsoflogicprogrammingallowingabductivereasoning,meta-reasoningandreasoninginopendomains.Weinvestigatethemethodologyofusingtheselanguagesforrepresentingvariousformsofnonmonotonicreasoningandfordescribingknowledgeinspeci cdomains.Wealsoaddressrecentworkonpropertiesofprogramsneededforsucessfulapplicationsofthismethodologysuchasconsistency,categoricityandcomplexity.1Contents1Introduction11.1HistoricalPerspective:::::::::::::::::::::::::::::::11.2StructureofthePaper::::::::::::::::::::::::::::::32GeneralLogicPrograms52.1Preliminaries:::::::::::::::::::::::::::::::::::52.2RepresentingKnowledgeinGeneralLogicPrograms::::::::::::::82.3AnsweringQueries::::::::::::::::::::::::::::::::122.4OtherSemanticsofGeneralLogicPrograms::::::::::::::::::143ExtendedLogicPrograms203.1RepresentingKnowledgeUsingExtendedLogicPrograms:::::::::::223.2OtherSemanticsofExtendedLogicPrograms:::::::::::::::::304DisjunctiveLogicPrograms334.1RepresentingKnowledgeUsingDisjunctiveLogicPrograms::::::::::354.2AnsweringQueries::::::::::::::::::::::::::::::::384.3OtherApproachestoDisjunctiveLogicPrograms:::::::::::::::405EpistemicLogicPrograms436Meta-logicProgramming477ReasoninginOpenDomains537.1TheSemantics:::::::::::::::::::::::::::::::::::537.2Applications::::::::::::::::::::::::::::::::::::548Abduction578.1AbductionforExplainingObservations:::::::::::::::::::::578.2AbductionandNegationasFailure:::::::::::::::::::::::598.3CombiningExplanationandDeduction:::::::::::::::::::::609Relatinglogicprogrammingandothernonmonotonicformalisms649.1AutoepistemicLogicandLogicProgramming:::::::::::::::::659.2DefaultsandLogicProgramming::::::::::::::::::::::::659.3TruthMaintenanceSystemsandLogicProgramming:::::::::::::6710Expressivenessandcomplexityresults6811Conclusion7121IntroductionInthispaper,wereviewrecentworkaimedattheapplicationoflogicprogrammingtoknowledgerepresentationinarti cialintelligence(AI).Weconsidervariousextensionsof\pureProlog(de nitelogicprograms)andshowhoweachoftheaddedfeaturesextendstherepresentationalpowerofthelanguage.1.1HistoricalPerspectiveKnowledgerepresentationisoneofthemostimportantsubareasofarti cialintelligence.Ifwewanttodesignanentity(amachineoraprogram)capableofbehavingintelligentlyinsomeenvironment,thenweneedtosupplythisentitywithsu cientknowledgeaboutthisenvironment.Todothat,weneedanunambiguouslanguagecapableofexpressingthisknowledge,togetherwithsomepreciseandwellunderstoodwayofmanipulatingsetsofsentencesofthelanguagewhichwillallowustodrawinferences,answerqueries,andtoupdateboththeknowledgebaseandthedesiredprogrambehavior.Around1960,McCarthy[McC59] rstproposedtheuseoflogicalformulasasabasisforaknowledgerepresentationlanguageofthistype.Thisishowheexplainstheadvantagesofsucharepresentation:Expressinginformationindeclarativesentencesisfarmoremodularthanex-pressingitinsegmentsofcomputerprogramsorintables.Sentencescanbetrueinamuchwidercontextthanspeci cprogramscanbeused.Thesupplierofafactdoesnothavetounderstandmuchabouthowthereceiverfunctionsorhoworwhetherthereceiverwilluseit.Thesamefactcanbeusedformanypurposes,becausethelogicalconsequencesofcollectionsoffactscanbeavailable.Thisideahasbeenfurtherdevelopedbymanyresearcherswithvariousbackgroundsandinterests.First,theclassicallogicofpredicatecalculusservedasthemaintechnicaltoolfortherepresentationofknowledge.Ithasawell-de nedsemanticsandawell-understoodandpowerfulinferencemechanism,anditprovedtobesu cientlyexpressivefortherepresenta-tionofmathematicalknowledge.Itwassoonrealized,however,thatfortherepresentationofcommonsenseknowledge,thistoolisinadequate.Thedi cultyisratherdeepandrelatedtotheso-called\monotonicityoftheoriesbasedonpredicatecalculus.Alogiciscalledmonotoniciftheadditionofnewaxiomstoatheorybasedonitneverleadstothelossofanytheoremsprovedinthistheory.Commonsensereasoningisnonmonotonic:newin-formationconstantlyforcesustowithdrawpreviousconclusions.Thisobservationhasledtothedevelopmentandinvestigationofnewlogicalformalisms,nonmonotoniclogics.Thebestknownofthemarecircumscription[McC80,McC86,Lif85b],defaultlogic[Rei80b],andnonmonotonicmodallogics[MD80,McD82,Moo85].Acollectionofimportantpapersonnonmonotonicreasoningpublishedbefore1987appearsin[Gin87].Asurveycanbefoundin[Rei87a].Muchtechnicalworkhasbeendonetoinvestigatethemathematicalpropertiesoftheselogics,aswellastheirapplicabilitytotheformalizationofcommonsensereason-inginvariousspeci cdomains.Thisworkhassubstantiallydeepenedourunderstanding1ofthepropertiesofnonmonotonicreasoningandofthetechnicalproblemsi