2018年北京市高考数学试卷(理科)解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页(共18页)2018年北京市高考数学试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。1.(5分)已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{﹣2,0,1,2}D.{﹣1,0,1,2}【分析】根据集合的基本运算进行计算即可.【解答】解:A={x||x|<2}={x|﹣2<x<2},B={﹣2,0,1,2},则A∩B={0,1},故选:A.【点评】本题主要考查集合的基本运算,根据集合交集的定义是解决本题的关键.比较基础.2.(5分)在复平面内,复数的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】利用复数的除法运算法则,化简求解即可.【解答】解:复数==,共轭复数对应点的坐标(,﹣)在第四象限.故选:D.【点评】本题考查复数的代数形式的乘除运算,复数的几何意义,是基本知识的考查.3.(5分)执行如图所示的程序框图,输出的s值为()第2页(共18页)A.B.C.D.【分析】直接利用程序框图的应用求出结果.【解答】解:执行循环前:k=1,S=1.在执行第一次循环时,S=1﹣=.由于k=2≤3,所以执行下一次循环.S=,k=3,直接输出S=,故选:B.【点评】本题考查的知识要点:程序框图和循环结构的应用.4.(5分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.fB.fC.fD.f第3页(共18页)【分析】利用等比数列的通项公式,转化求解即可.【解答】解:从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为:=.故选:D.【点评】本题考查等比数列的通项公式的求法,考查计算能力.5.(5分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4【分析】画出三视图的直观图,判断各个面的三角形的情况,即可推出结果.【解答】解:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,AC=,CD=,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.故选:C.第4页(共18页)【点评】本题考查简单几何体的三视图的应用,是基本知识的考查.6.(5分)设,均为单位向量,则“|﹣3|=|3+|”是“⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据向量数量积的应用,结合充分条件和必要条件的对应进行判断即可.【解答】解:∵“|﹣3|=|3+|”∴平方得||2+9||2﹣6•=9||2+||2+6•,即1+9﹣6•=9+1+6•,即12•=0,则•=0,即⊥,则“|﹣3|=|3+|”是“⊥”的充要条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,结合向量数量积的公式进行转化是解决本题的关键.7.(5分)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x﹣my﹣2=0的距离.当θ、m变化时,d的最大值为()A.1B.2C.3D.4【分析】由题意d==,当sin(θ+α)=第5页(共18页)﹣1时,dmax=1+≤3.由此能求出d的最大值.【解答】解:由题意d==,tanα==,∴当sin(θ+α)=﹣1时,dmax=1+≤3.∴d的最大值为3.故选:C.【点评】本题考查点到直线的距离的最大值的求法,考查点到直线的距离公式、三角函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.8.(5分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∈AD.当且仅当a≤时,(2,1)∉A【分析】利用a的取值,反例判断(2,1)∈A是否成立即可.【解答】解:当a=﹣1时,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,﹣x+y>4,x+y≤2},显然(2,1)不满足,﹣x+y>4,x+y≤2,所以A,C不正确;当a=4,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,4x+y>4,x﹣4y≤2},显然(2,1)在可行域内,满足不等式,所以B不正确;故选:D.【点评】本题考查线性规划的解答应用,利用特殊点以及特殊值转化求解,避免可行域的画法,简洁明了.二、填空题共6小题,每小题5分,共30分。9.(5分)设{an}是等差数列,且a1=3,a2+a5=36,则{an}的通项公式为an=6n﹣3.第6页(共18页)【分析】利用等差数列通项公式列出方程组,求出a1=3,d=6,由此能求出{an}的通项公式.【解答】解:∵{an}是等差数列,且a1=3,a2+a5=36,∴,解得a1=3,d=6,∴an=a1+(n﹣1)d=3+(n﹣1)×6=6n﹣3.∴{an}的通项公式为an=6n﹣3.故答案为:an=6n﹣3.【点评】本题考查等差数列的通项公式的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.10.(5分)在极坐标系中,直线ρcosθ+ρsinθ=a(a>0)与圆ρ=2cosθ相切,则a=1+.【分析】首先把曲线和直线的极坐标方程转化成直角坐标方程,进一步利用圆心到直线的距离等于半径求出结果.【解答】解:圆ρ=2cosθ,转化成:ρ2=2ρcosθ,进一步转化成直角坐标方程为:(x﹣1)2+y2=1,把直线ρ(cosθ+sinθ)=a的方程转化成直角坐标方程为:x+y﹣a=0.由于直线和圆相切,所以:利用圆心到直线的距离等于半径.则:=1,解得:a=1±.a>0则负值舍去.故:a=1+.故答案为:1+.【点评】本题考查的知识要点:极坐标方程与直角坐标方程的互化,直线与圆相切的充要条件的应用.第7页(共18页)11.(5分)设函数f(x)=cos(ωx﹣)(ω>0),若f(x)≤f()对任意的实数x都成立,则ω的最小值为.【分析】利用已知条件推出函数的最大值,然后列出关系式求解即可.【解答】解:函数f(x)=cos(ωx﹣)(ω>0),若f(x)≤f()对任意的实数x都成立,可得:,k∈Z,解得ω=,k∈Z,ω>0则ω的最小值为:.故答案为:.【点评】本题考查三角函数的最值的求法与应用,考查转化思想以及计算能力.12.(5分)若x,y满足x+1≤y≤2x,则2y﹣x的最小值是3.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义进行求解即可.【解答】解:作出不等式组对应的平面区域如图:设z=2y﹣x,则y=x+z,平移y=x+z,由图象知当直线y=x+z经过点A时,直线的截距最小,此时z最小,由得,即A(1,2),此时z=2×2﹣1=3,故答案为:3第8页(共18页)【点评】本题主要考查线性规划的应用,利用目标函数的几何意义以及数形结合是解决本题的关键.13.(5分)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是f(x)=sinx.【分析】本题答案不唯一,符合要求即可.【解答】解:例如f(x)=sinx,尽管f(x)>f(0)对任意的x∈(0,2]都成立,当x∈[0,)上为增函数,在(,2]为减函数,故答案为:f(x)=sinx.【点评】本题考查了函数的单调性,属于基础题.14.(5分)已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为2.【分析】利用已知条件求出正六边形的顶点坐标,代入椭圆方程,求出椭圆的离心率;利用渐近线的夹角求解双曲线的离心率即可.【解答】解:椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线第9页(共18页)N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,可得椭圆的焦点坐标(c,0),正六边形的一个顶点(,),可得:,可得,可得e4﹣8e2+4=0,e∈(0,1),解得e=.同时,双曲线的渐近线的斜率为,即,可得:,即,可得双曲线的离心率为e==2.故答案为:;2.【点评】本题考查椭圆以及双曲线的简单性质的应用,考查计算能力.三、解答题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。15.(13分)在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【分析】(Ⅰ)由正弦定理结合大边对大角进行求解即可.(Ⅱ)利用余弦定理求出c的值,结合三角函数的高与斜边的关系进行求解即可.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,第10页(共18页)即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.【点评】本题主要考查解三角形的应用,利用正弦定理以及余弦定理建立方程关系是解决本题的关键.16.(14分)如图,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=,AC=AA1=2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B﹣CD﹣C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.【分析】(I)证明AC⊥BE,AC⊥EF即可得出AC⊥平面BEF;(II)建立坐标系,求出平面BCD的法向量,通过计算与的夹角得出二面角的大小;(III)计算与的数量积即可得出结论.【解答】(I)证明:∵E,F分别是AC,A1C1的中点,∴EF∥CC1,∵CC1⊥平面ABC,∴EF⊥平面ABC,又AC⊂平面ABC,∴EF⊥AC,∵AB=BC,E是AC的中点,∴BE⊥AC,又BE∩EF=E,BE⊂平面BEF,EF⊂平面BEF,第11页(共18页)∴AC⊥平面BEF.(II)解:以E为原点,以EB,EC,EF为坐标轴建立空间直角坐标系如图所示:则B(2,0,0),C(0,1,0),D(0,﹣1,1),∴=(﹣2,1,0),=(0,﹣2,1),设平面BCD的法向量为=(x,y,z),则,即,令y=2可得=(1,2,4),又EB⊥平面ACC1A1,∴=(2,0,0)为平面CD﹣C1的一个法向量,∴cos<,>===.由图形可知二面角B﹣CD﹣C1为钝二面角,∴二面角B﹣CD﹣C1的余弦值为﹣.(III)证明:F(0,0,2),(2,0,1),∴=(2,0,﹣1),∴•=2+0﹣4=﹣2≠0,∴与不垂直,∴FG与平面BCD不平行,又FG⊄平面BCD,∴FG与平面BCD相交.【点评】本题考查了线面垂直的判定,二面角的计算与空间向量的应用,属于中档题.第12页(共18页)17.(12分)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk=1”表示第k类电影得到人们喜欢.“ξk=0”表示第k类电

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功