1第8章过渡金属膦配合物金属有机化学28.1膦配体PR3中性2e配体优异的软配体;通过改变R基团可以很容易地调节膦配体的立体和电子性质;具有空的d轨道,也可以作为电子接受体(当R为吸电子基团时起重要作用);R:烃基phosphine(美国)phosphane(德国/欧洲)R:OR(烷氧基)phosphite/亚磷酸酯3膦配体具有三个R基团,与金属配位后则具有四面体的配位构型,从而成为最具有变化性的中性2e给电子配体。通过改变R基团,可以显著改变膦配体的性质:显著改善膦配体的电子因素(从优秀的给体/弱的-电子受体转变为弱的给电子体/好的-电子受体);显著改变立体位阻因素(从小位阻配体到巨大位阻的配体);可以衍生变化出大量的多齿膦配体,从而可形成多变的配位结构;RPR2PR2R2PMM(3-tripod)facialcoordinatingMMPPR2PPR2RRracemic-M2(P4)binucleatingphosphineabletobridgeandchelate2metals4COCOCORLowestCOstretchingfrequency:mostdonatingphosphineHighestCOstretchingfrequency:leastdonatingphosphine(best-acceptor)8.2膦配体立体位阻和给电子能力的量度1977,杜邦公司ChadTolman(Chem.Rev.1977,77,313-348)给电子能力的测定:Ni(CO)4与一当量单齿膦配体反应,生成Ni(CO)3(PR3)络合物;测定C≡O的红外伸缩振动频率:膦配体贡献越多的电子密度给金属中心,金属的d-反馈作用越强,从而削弱C≡O的三键,使CO伸缩振动频率降低。5Mconeangle膦配体的大小或立体位阻的测定:从膦配体的3D填充模型获得;用锥角(coneangle)的大小来近似衡量膦配体与金属配位后所形成的配位空间的大小。用Tolman的方法所测定的膦配体给电子能力的大小(由强到弱)PR3mixedP(OR)3PX3,cm1P(t-Bu)32056.1PCy32056.4P(o-OMe-C6H4)32058.3P(i-Pr)32059.2PBu32060.3PEt32061.7PEt2Ph2063.7PMe32064.1PMe2Ph2065.3P(p-OMe-C6H4)3PPh2(o-OMe-C6H4)2066.1PBz32066.4P(o-Tol)32066.6P(p-Tol)3PEtPh22066.7PMePh22067.0P(m-Tol)32067.2PPh2(NMe2)2067.3PPhBz22067.6PPh2Bz2068.4PPh32068.9PR3mixedP(OR)3PX3,cm1PPh2(CH=CH2)2069.3P(CH=CH2)3PPh2(p-F-C6H4)2069.5PPh(p-F-C6H4)22070.0P(p-F-C6H4)32071.3PPh2(OEt)2071.6PPh2(OMe)2072.0PPh(O-i-Pr)22072.2P(p-Cl-C6H4)32072.8PPh2H2073.3PPh(OBu)22073.4P(m-F-C6H4)32074.1PPh(OEt)22074.2PPh2(OPh)2074.6PPh2(C6F5)2074.8用Tolman的方法所测定的膦配体给电子能力的大小(由强到弱)PR3mixedP(OR)3PX3,cm1P(O-i-Pr)32075.9P(OEt)32076.3PPhH22077.0P(CH2CH2CN)32077.9P(OCH2CH2OMe)32079.3P(OMe)32079.5PPh(OPh)22079.8PPh2Cl2080.7PMe2CF32080.9P(O-2,4-Me-C6H3)3PH32083.2P(OCH2CH2Cl)32084.0P(O-Tol)32084.1P(OPh)32085.3P(OCH2)3CR2086.8P(OCH2CH2CN)32087.6P(C6F5)32090.9PCl32097.0PF32110.8用Tolman的方法所测定的膦配体给电子能力的大小(由强到弱)用Tolman的方法所测定的膦配体立体位阻的大小(由小到大)PR3mixedP(OR)3PX3(°)PH387PPhH2101PF3104Me2PCH2CH2PMe2P(OMe)3107P(OEt)3109P(CH2O)3CR114Et2PCH2CH2PEt2115P(OMe)2Ph115PPh(OEt)2116PMe3118Ph2PCH2PPh2121PMe2Ph122PMe2CF3PCl3124Ph2PCH2CH2PPh2125PPh2HP(OPh)3128P(O-i-Pr)3130PBr3131用Tolman的方法所测定的膦配体立体位阻的大小(由小到大)PR3mixedP(OR)3PX3(°)PEt3,PPr3,PBu3PPh2(OMe)132PPh2(OEt)133PEt2Ph,PMePh2136P(CF3)3137Cy2PCH2CH2PCy2142PPh3145PPh2(i-Pr)150PPh2(t-Bu)157PPh2(C6F5)158P(i-Pr)3160PBz3165PCy3PPh(t-Bu)2170P(O-t-Bu)3175P(t-Bu)3182P(C6F5)3184P(o-Tol)3194P(mesityl)32128.3常用的单齿膦配体PPh3(145°,中等给电子配体),triphenylphosphine,tpp“TheKING”空气稳定的白色晶体,没有气味;增加-给电子能力:PMePh2(136°),PMe2Ph(122°),PMe3(118°),PEt3(132°)P(Cy)3(170°),P(t-Bu)3(182°)烷基膦配体是强的-给电子体,通常是无色液体,但对空气非常敏感,气味难闻(除非具有高分子量及没有挥发性);弱的-给体,好的受体:Phosphites:P(OMe)3(107°),P(OEt)3(110°),P(OPh)3(128°)亚膦酸酯相对是弱的-给体,但可以是较好的-受体(相当于CO的一半);低分子量的通常是无色液体,高分子量的是白色固体;通常对空气稳定,但对潮气敏感,带有一些甜味;PF3(104°):非常差的-给体,强的-受体,几乎与CO一样强。8.4常用的多齿膦配体Ph2PPPh2dppe(125°)diphenylphosphinoethanebis(diphenyl)phosphinoethanechelatingligandRhPh2PPPh2RhPPh2Ph2PSCCOOA-FramebimetallicRh2(-S)(CO)2(dppm)2Kubiak&EisenbergJACS,1977,99,6129Ph2PPPh2dppm(121°)diphenylphosphinomethanebis(diphenyl)phosphinomethanebridgingligandNiPh2PPPh2ClCltypicalP-M-Panglefora5-memberedchelatering82-87°NiCl2(dppe)vanKoten,etalActaCrys.C,1987,43,1878dmpe(107°)dimethylphosphinoethanebis(dimethyl)phosphinoethanechelatingligandelectron-rich,strongdonorMe2PPMe2Ph2PPPh2dppp(127°)diphenylphosphinopropanebis(diphenyl)phosphinopropanechelatingligandforms6-memberedringstypicalP-M-Panglefora6-memberedchelatering88-92°86.9°95.5°Ph2PPhPPPh2triphosbis(diphenylphosphinoethyl)phenylphosphinebis-chelatingligandMePPh2PPh2Ph2PMtripodtris(diphenylphosphinoethyl)methanebis-chelatingligandfacialcoordinationTeNiPh2PPh2PPPhTeVaira&coworkersAngew.Chem.Int.Ed.,1987,26,916BertinssonActaCrys.C.,1983,39,563Ph2PNiPh2PClPPhCrClClPPh2Ph2PPh2PClCH3Jones&coworkersInorg.Chem.,1986,25,1080facialcoordinatingmodeplanarcoordinatingmode+PPh2PPPh2PhPPh2PPhPPPhPPh2tetraphos-11,1,4,7,10,10-hexaphenyl-1,4,7,10-tetraphophadecanetris-chelatingorbinucleating(bridging)ligandPh2PPtPh2PPPPhPh84°109°Bruggeller&coworkersActaCrys.C.,1990,46,388Bacci&coworkersInorg.Chem.,1984,23,2798Bruggeller&coworkersInorg.Chim.Acta,1992,197,75BrFePPh2PPhPh2PPtClPClPPtPPh2ClClPhPhPPPh2PPh2PPh2tetraphos-2tris(diphenylphosphinoethyl)phosphinetris-chelatingligandfacialcoordinationPPh2CoPPh2P(OMe)3Meek&coworkersInorg.Chem.,1983,25,6162++dppf1,1’-bis(diphenylphosphino)-ferrocene1,1’-二(二苯基膦基)-二茂铁BINAP2,2’-bis(diphenylphosphino)-1,1’-binaphthalene2,2’-二(二苯基膦基)-1,1’-联二萘FePPh2PPh2PPh2PPh2168.5过渡金属膦配合物的结构特点膦化合物PR3仅被发现作为2e给体以端基形式与金属配位,没有真正意义上的-单膦桥;Ti-P2.6ÅV-P2.5ÅCr-P2.4ÅNi-P2.1Å以第一周期过渡金属为例,从左往右,M–P键长逐渐减小,这一方面是由于金属的电负性逐渐增加,此外也由于M–P作用在逐渐增强(后过渡金属相对更“软”,更容易与P发生作用);烷基膦配体与缺电子的中、后过渡金属的中性或一价阳离子金属中心所形成的M-P最强;高氧化态的前过渡金属太“硬”以致不能与大多数的膦配体形成有效的键(尽管目前有越来越多的结构比较稳定的前过渡金属膦配合物被合成出来);过渡金属络合物中具有多个膦配体时,它们倾向于彼此之间成反式结构以消减立体排斥作用(特别是具有大位阻的膦配体);具螯合结构的双齿膦配体通常会构筑一个顺式的配位构型;金属中心具有太多的电子云密度时,不倾向于与强给电子能力的烷基膦配体配位,因而形成弱的M–P键且膦配体容易解离。如下所示:Rh2(-CO)(CO)4(P4)失去一个羰基时,重排成膦配体呈不对称配位的二聚体:RhRhPPPhCOOCCPhOP2EtEt2PCOCORhRhCPhPhPPOPCOCOCOEt2PEt2-CO+CO依赖于CO和温度的可逆平衡反应。不对称的二聚体可认为是一个阴阳离子化合物:阳离子的Rh(+1)中心配位有三个膦,而准四面体的阴离子Rh(-1)有