10.5角平分线(2)已知:∠AOB,如图.求作:射线OC,使∠AOC=∠BOC.作法:用尺规作角的平分线.1.在OA和OB上截取OD,OE,使OD=OE.2.分别以点D和E为圆心,以大于DE/2长为半径作弧,两弧在∠AOB内交于点C.3.作射线OC.请你说明OC为什么是∠AOB的平分线,并与同伴进行交流.老师提示:作角平分线是最基本的尺规作图,这种方法要确实掌握.ABOC则射线OC就是∠AOB的平分线.DE知识回顾定理角平分线上的点到这个角的两边距离相等.老师提示:这个结论是经常用来证明两条线段相等的根据之一.如图,∵OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别是D,E(已知)∴PD=PE(角平分线上的点到这个角的两边距离相等).OCB1A2PDE回顾与思考逆定理在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上.如图,∵PA=PB,PD⊥OA,PE⊥OB,垂足分别是D,E(已知),∴点P在∠AOB的平分线上.(在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上).老师提示:这个结论又是经常用来证明点在直线上(或直线经过某一点)的根据之一.从这个结果出发,你还能联想到什么?OCB1A2PDE回顾与思考剪一个三角形纸片通过折叠找出每个角的平分线.结论:三角形三个角的平分线相交于一点.老师期望:你能写出规范的证明过程.你想证明这个命题吗?观察这三条角平分线,你发现了什么?做一做教学目标角平分线的性质定理和判定定理的灵活运用。命题:三角形三个角的平分线相交于一点.引入新知基本想法是这样的:我们知道,两条直线相交只有一个交点.要想证明三条直线相交于一点,只要能证明两条直线的交点在第三条直线上即可.这时可以考虑前面刚刚学到的逆定理.ABCPMNDEF命题:三角形三个角的平分线相交于一点.如图,设△ABC的角平分线BM,CN相交于点P,过点P分别作BC,AC,AB的垂线,垂足分别是E,F,D.∵BM是△ABC的角平分线,点P在BM上,∴△ABC的三条角平分线相交于一点P.ABCPMNDEF∴PD=PE(角平分线上的点到这个角的两边距离相等).同理,PE=PF.∴PD=PF.∴点P在∠BAC的平分线上(在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上).求证:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等.ABCPMNDEF例2如图,在△ABC中,已知AC=BC,∠C=900,AD是△ABC的角平分线,DE⊥AB,垂足为E.老师期望:你能正确地解答并规范地写出其过程.(1)如果CD=4cm,AC的长;(2)求证:AB=AC+CD.EDABC例31.已知:如图,∠C=900,∠B=300,AD是Rt△ABC的角平分线.求证:BD=2CD.老师期望:你能写出规范的证明过程.ABCD课堂练习定理角平分线上的点到这个角的两边距离相等.逆定理在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上.定理:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等(这个交点叫做三角形的内心).OCB1A2PDE小结拓展当堂达标见导学案课堂小结1.知识方面:______________________________2.数学思想方法方面:_________________________-2.已知:如图,△ABC的外角∠CBD和∠BCE的角平分线相交于点F.求证:点F在∠DAE的平分线上.老师期望:养成用数学解释生活的习惯.ABCFDE课后作业3.已知:如图,P是∠AOB平分线上的一点,PC⊥OA,PD⊥OB,垂足分别C,D.求证:(1)OC=OD;(2)OP是CD的垂直平分线.老师期望:做完题目后,一定要“悟”到点东西,纳入到自己的认知结构中去.BAPDCO课后作业