Ch4、不定积分§1、不定积分的概念与性质1、原函数与不定积分定义1:若)()(xfxF,则称)(xF为)(xf的原函数。①连续函数一定有原函数;②若)(xF为)(xf的原函数,则CxF)(也为)(xf的原函数;事实上,)()()(''xfxFCxF③)(xf的任意两个原函数仅相差一个常数。事实上,由0)()()()()()('2'1'11xfxfxFxFxFxF,得CxFxF)()(21故CxF)(表示了)(xf的所有原函数,其中)(xF为)(xf的一个原函数。定义2:)(xf的所有原函数称为)(xf的不定积分,记为dxxf)(,积分号,)(xf被积函数,x积分变量。显然CxFdxxf)()(①Ckxkdx②1ln1111CxCxdxx2、基本积分表(共24个基本积分公式)3、不定积分的性质①dxxgdxxfdxxgxf)()()()(②)0()()(kdxxfkdxxkf⑤Cxxxdxxxdxdxxxxcsccotcotcsccsccotcsccsc2⑥Cxxxdxxdxdxxxxxxxdxtancotseccsccossincossincossin22222222⑦Cxxdxxdxxcot1csccot222§2、不定积分的换元法一、第一类换元法(凑微分法)1、baxdadxbaxdbaxfadxbaxf1,1即例1、求不定积分①Cxuduuxxxdxdx)5cos(51sin51555sin515sin②CxCxxdxdxx81777211612117121)21(212121③)20(arctan111222Caxaaxaxdaxadx④)23(arcsin1222Caxaxaxdxadx2、nnnnnndxdxxdxxfndxxxf11,1即例2、求不定积分①CxCxxdxdxxx232121221221221311112111211②Cexdedxexxxx333323131③xddxxCxxdxdxxx111sin11cos1cos122④xddxxCxxdxdxxx21sin2cos2cos3、,tansec,sincos,cossin,,ln12xdxdxxdxdxxdxdxdedxexddxxxx,,arcsin11,arctan11,sectansec222222xaddxxaxxddxxxddxxxdxdxx①)16(seclncoslncoscoscossintanCxCxxxddxxxxdx3②)17(coslnsinlnsinsinsincoscotCxCxxxddxxxxdx③)18(tanseclntansectansectansectansecsecsecCxxxxxxddxxxxxxxdx④)19(cotcsclncotcsccotcsccotcsccotcsccsccscCxxxxxxddxxxxxxxdx⑤Cxxxddxxxlnlnlnlnln1⑥Cxxxdxxdx1tanln1tan1tantan1cos2⑦Ceeeddxeexxxxx1ln111⑧Cexeeeedxxxxxx1ln111⑨Ceededxeexxxxxarctan1122⑩Cexdedxexxxxx2122121211例4、求不定积分①axaxdaxaxdadxaxaxaaxdx)()(21112122)22)(21(ln21Caxaxa②dxxxdxxxxdxxxx2222213113112Cxxxxdxxxdxarctan31ln211311212222③413525221526222152422222xdxxxxxddxxxxdxxxxCxxx21arctan2352ln212④Cxxxxdxdxxxdx2sin412122cos21212122cos1sin24⑤Cxxdxxxxdxx2cos418cos1612sin8sin213cos5sin⑥Cxxxdxxxdxxdxdxxxsinlnlnsinlnsinlnsinlnsinsinsinlnsincossinlncot⑦Cxxxxdxdxdxxxxdxcos1tancoscosseccossin1sin1222⑧44csc214sin2sincosxdxxdxxxdxCxx4cot4cscln21二、第二类换元法1、三角代换例1、dxxa22解:令)cos(sintatax或,则tdtadxtaxacos,cos22原式=ttddtadttatdtata22cos21222cos1coscos22CaxaaxaaxaCtata22222224arcsin22sin42Cxaxaxa22221arcsin21例2、Caxaxaxdxadxarcsin1222解:令taxsin原式=CaxCtdttatdtaarcsincoscos例3、22xadx解:令)cot(tantatax或,则tdtadxtaxa222sec,sec5原式=CaxaaxCtttdttatdta222lntanseclnsecsecsec)24(ln22Caxx例4、42xxdx解:令)cot(tantatax或,则tdtdxtx22sec2,sec24原式=CaxaaxCtttdttatdta222lntanseclnsecsecsec例5、22axdx解:令)csc(sectatax或,则tdttadxtaaxtansec,tan22原式=caaxaxCtttdttatdtta22lntanseclnsectantansec)25(ln22Caxx例6、dxxx92解:令taxsec,则tdttdxtxtansec3,tan392原式=Cttttdttdtttttan31sec3tan3tansec3sec3tan322CxxCxx3arccos393arccos39322小结:)(xf中含有222222axaxxa可考虑用代换taxtaxtaxsectansin2、无理代换6例7、311xdx解:令dttdxtxtx2333,1,1则原式=Ctttdtttdttttdtt1ln231113111313222Cxxx333211ln313123例8、31xxdx解:令dttdxtxtx5666,,则原式=Cttdttdtttttdttarctan611161616222235Cxx66arctan6例9、dxxxx11解:令22212,11,1ttdtdxtxtxx则原式=Ctttdttdtttttdttt11ln212111212121222222Cxxxxxx11ln12例10、xedx1解:令12,1ln,122ttdtdxtxtex则原式CeeCtttdtdttttxx1111ln11ln21212121224、倒代换7例11、46xxdx解:令2676,4111,1tdtdxttxxtx则原式CxxCtttdtdtt4ln24114ln2411414241416666666Cxx4ln241ln416§3、分部积分法分部积分公式:VUUVVUVUVUUV,VdxUdxUVdxVU,故VdUUVUdV(前后相乘)(前后交换)例1、xdxxcosCxxxxdxxxxxdcossinsinsinsin例2、dxxexCexedxexexdexxxxx例3、xdxlnCxxxdxxxxxxxdxxln1lnlnln或解:令textx,ln原式CxxxCetedtetetdetttttln例4、xdxarcsinCxxxxxdxxdxxxxxxxdxx22221arcsin1121arcsin1arcsinarcsinarcsin或解:令txtxsin,arcsin原式CxxxCttttdtttttd21arcsincossinsinsinsin8例5、xdxexsinxdxexxexdexexexdexexdxexexdexxxxxxxxxxsincossincoscossincossincossinsin故Cxxexdxexxcossin21sin例6、dxxx2cosCxxxxdxxxxxdseclntantantantan例7、dxxx21lnCxxxxdxxxxxxdxxxxxxxxx222222211ln11ln1111ln§4、两种典型积分一、有理函数的积分有理函数01110111)()()(bxbxbxbaxaxaxaxQxPxRmmmmnnnn可用待定系数法化为部分分式,然后积分。例1、将6532xxx化为部分分式,并计算dxxxx6532解:3223323236532xxBAxBAxBxAxxxxxx653231BABABA故Cxxxdxxdxdxxxx)3ln(6)2ln(536256532或解:65211656521651152212222xxdxxxxxddxxxxIdxxxxx213121165ln2129Cxxxx