第二类换元积分法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

上页下页铃结束返回首页1微分公式积分公式()()dFxfxdx[()][()]()dFxfxxdx()duvvduudv()()fxdxFxC1212()()dkFkGkfkgdx1212()kfkgdxkfdxkgdx()[()]()[()]uxfxxdxfuduudvuvvdu第二类换元积分法微分运算与求不定积分的运算是互逆的(不计C).一个微分公式对应着一个不定积分公式.上页下页铃结束返回首页2定理1设x(t)是单调的、可导的函数,并且(t)0.又设f[(t)](t)具有原函数F(t),则有换元公式其中t1(x)是x(t)的反函数.这是因为,由复合函数和反函数求导法则,)()]([1)()]([)(})]([{1xftfdtdxttfdxdttFxF.)()]([1)()]([)(})]([{1xftfdtdxttfdxdttFxF.)()]([1)()]([)(})]([{1xftfdtdxttfdxdttFxF.)()]([1)()]([)(})]([{1xftfdtdxttfdxdttFxF.dtttfdxxf)()]([)(.)]([)(1CxFCtF上页下页铃结束返回首页3例1求令,6txttxd6d5xxxd)1(13ttttd)1(6235tttd1622tttd111622ttd11162Ctt]arctan[6Cxx]arctan[666解根式代换(去根式)31d(1)xxx上页下页铃结束返回首页4解1d1xxe1,xte令21,xet22dd.1txtt1d1xxe22d1tt2arctantC2arctan1xeC2ln(1),xt212d1tttt根式代换(去根式)则例2求上页下页铃结束返回首页5三角代换•去根式22xa作代换,sintax,arcsinaxt.cos22taxa•去根式22ax作代换,sectax,arccosxat.tan22taax•去根式22xa作代换,tantax,arctanaxt.sec22taxa上页下页铃结束返回首页6解令sin,xatttaxdcosdxxad22ttadcos22taa222sinttad22cos12Ctta)2sin21(22辅助三角形ttadcosaxaarcsin22Cttta)cossin(22Cxax222回代arcsin,xta例3求)0(d22axxa上页下页铃结束返回首页7解)0(d122axax令tan,xatttaxdsecd2xaxd122tasec1ttdsec1|tansec|lnCttaCaxxln||ln122Caxx||ln22ttadsec2回代ln1Caax22ax辅助三角形arctan,xta例4求上页下页铃结束返回首页812222||ln||lnCaxxCaaxax解当xa时,Ctttdtdttattaaxdxtax|tansec|lnsectantansecsec22令(C1Clna).12222||ln||lnCaxxCaaxaxCtttdtdttattaaxdxtax|tansec|lnsectantansecsec22令Ctttdtdttattaaxdxtax|tansec|lnsectantansecsec22令Ctttdtdttattaaxdxtax|tansec|lnsectantansecsec22令Ctttdtdttattaaxdxtax|tansec|lnsectantansecsec22令回代辅助三角形例5求221d(0)xaxa上页下页铃结束返回首页9当xa时,Cauuauduaxdxux||ln222222令12222||ln||lnCaxxCaxx(C1C2lna).Caxxaxdx||ln2222.综合起来有Cauuauduaxdxux||ln222222令Cauuauduaxdxux||ln222222令Cauuauduaxdxux||ln222222令12222||ln||lnCaxxCaxx12222||ln||lnCaxxCaaxax解当xa时,Ctttdtdttattaaxdxtax|tansec|lnsectantansecsec22令(C1Clna).12222||ln||lnCaxxCaaxaxCtttdtdttattaaxdxtax|tansec|lnsectantansecsec22令Ctttdtdttattaaxdxtax|tansec|lnsectantansecsec22令Ctttdtdttattaaxdxtax|tansec|lnsectantansecsec22令Ctttdtdttattaaxdxtax|tansec|lnsectantansecsec22令练习例5求221d(0)xaxa上页下页铃结束返回首页10假设函数f(x)在区间[a,b]上连续,函数x(t)满足条件:(1)(t)在[,](或[,])上具有连续导数;(2)()a,()b,且([,])=[a,b],则有dtttfdxxfba)()]([)(.定理2——换元公式证明是的原函数,因此有则)()(aFbF)]([F)]([F)(t)(t)(t)(t)(t设F(x)为f(x)的一个原函数,上页下页铃结束返回首页11解令,sintax则,dcosdttax;0,0tx时当.,2tax时原式=2attad)2cos1(2202)2sin21(22tta0220ttdcos2dtttfdxxftxba)()]([)()(令(当xa时t,当xb时t).例6计算上页下页铃结束返回首页12例7计算解令43,tx则24,3tx原式212423()d3ttttdtttfdxxftxba)()]([)()(令(当xa时t,当xb时t).2dd,3xtt当x=0时,t=2;当x=1时,t=12212(4)d9tt3212[(4)]93tt10.27上页下页铃结束返回首页13解xxdxdxxcoscossincos520520xxdxdxxcoscossincos520520xxdxdxxcoscossincos520520610cos612cos61]cos61[66206x.610cos612cos61]cos61[66206x.61]61[106105015costdttdtttx令.61]61[106105015costdttdtttx令.61]61[106105015costdttdtttx令.61]61[106105015costdttdtttx令.61]61[106105015costdttdtttx令.xxdxdxxcoscossincos520520或提示:当x0时t1,当2x时t0.提示:换元一定要换积分限,不换元积分限不变.dtttfdxxftxba)()]([)()(令(当xa时t,当xb时t).例8计算xxdxdxxcoscossincos520520上页下页铃结束返回首页14aaadxxfdxxfxfdxxfxf000)(2)]()([)]()([.证明例9设f(x)在[a,a]上连续,证明证明因为dxxfdxxfdxxfaaaa)()()(00,而aaatxadxxfdttfdttfdxxf0000)()()()(令,aaaadxxfdxxfdxxf00)()()(而aaatxadxxfdttfdttfdxxf0000)()()()(令,而aaatxadxxfdttfdttfdxxf0000)()()()(令,而aaatxadxxfdttfdttfdxxf0000)()()()(令,0()[()()]aaafxdxfxfxdx并计算211.1xxdxe2111xxdxe0()aftdt上页下页铃结束返回首页15注:例9设f(x)在[a,a]上连续,证明(1)当f(x)为奇函数时,(2)当f(x)为偶函数时,()0.aafxdx0()2().aaafxdxfxdx练习0()[()()]aaafxdxfxfxdx上页下页铃结束返回首页16()()bbaafxdxfabxdx证明令,xabt则dd,xt当xa时,tb;()()()baabfxdxfabtdt()bafabtdt()bafabxdx注:若f(x)在[0,1]上连续,则有2200(sin)(cos)fxdxfxdx当xb时,ta.例10设f(x)在[a,b]上连续,证明上页下页铃结束返回首页17例11求71d(2)xxx令,1txttxd1d2xxxd)2(17ttttd12127tttd2176Ct|21|ln1417Cxx||ln21|2|ln14177721)21(d141tt.1tx可作倒代换注一些情况下(如被积函数是分式,分母的方幂较高时),解上页下页铃结束返回首页18解.d1143xxxxxxd1143令ttxd1d2ttttd111243tttd143)d(114144tt1Ct4121.2124Cxx,1tx可作倒代换.1tx注一些情况下(如被积函数是分式,分母的方幂较高时),例12求上页下页铃结束返回首页19作业习题4.4(P174):3.(6)(10)(11)习题4.5(P188):2.(1)(2)(3)

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功