西安交大数理统计作业(完整版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1第一章1.1X~N(μ,2)则X~N(,2n),所以X-~N(0,2n)P{X-1}=P{X-n1}=0.95X-n~N(0,1),而(0.975)1.96所以n最小要取[21.96x2]+11.2(1)至800小时,没有一个元件失效这个事件等价于P{123456XXXXXX800}的概率由已知X服从指数分布,可求得P{123456XXXXXX800}=7.2e(2)至3000小时,所有六个元件都失效的概率等价与P{123456XXXXXX3000}的概率可求得P{123456XXXXXX3000}=4.56(1)e1.521()niiXa=21[()()]niiXXXa=22111()2()()()nnniiiiiXXXaXXXa因为1()niiXX=0所以21()niiXa=2211()()nniiiXXXa=221()ninSXa所以当a=X时,21()niiXa有最小值且等于2nS1.6(1)由11niiXXn2有等式的左边=22112nniiiiXXn等式的右边=22221122nniiiiXXXnXnXnXn=222221122nniiiiXnXnXnXXn=22112nniiiiXXn左边等于右边,结论得证。(2)等式的左边=22112nniiiiXXXnX=221niiXnX等式的右边=221niiXnX左边等于右边,结论得证。1.7(1)由11nniiXXn及2211()nniniSXXn有左边=1111111111()1111nnnnniiniiiiXXXXXXnnnn111()111nnnnnnXXXXXnnn=右边左边等于右边,结论得证。(2)由左边=1221111()1nniniSXXn121111[()]11ninnniXXXXnn121111[()()]11ninnniXXXXnn1221121121[()()()()]11(1)nininnnnniXXXXXXXXnnn32221121111()()()]11(1)ninnnnniXXXXXXnnn2212()1(1)nnnnSnXXnn2211[()]11nnnnSXXnn=右边左边等于右边,结论得证。1.9因为iiyaxb所以111111()nnniiiiiiyyaxbaxbaxbnnn222111111()()()nnnyiiiiiiSyyaxbaxbaxaxnnn22xaS再令179.98y,……,1479.96y再令a=1,b=80由80iiiyaxbx得:ix为:-0.02,0.04,0.02,0.04,0.03,0.03,0.04,-0.03,0.05,0.03,0.02,0.00,0.02,-0.0414110.016414iixx14142221111()(0.0164)0.00071414xiiiiSxxx0.01648080.0164yaxb2220.0007yxSaS1.10由11niiXXn2211()niiSXXn4故1111()()()()nniiiiEXEXEXEXnn211111()()()()nniiiiDXDXDXDXnnn222211111[()][(2)()nniiiiinESEXXEXXXXDXnnn(1)二项分布()EXmp()(1)DXmpp()()EXEXmp1(1)()()mppDXDXnn211()()(1)nnESDXmppnn(2)泊松分布()EX()DX()()EXEX1()()DXDXnn211()()nnESDXnn(3)均匀分布()2abEX2()()12baDX()()2abEXEX2()1()()12baDXDXnn22()11()()12bannESDXnn(4)指数分布1()EX21()DX1()()EXEX5211()()DXDXnn2211()()nnESDXnn(5)正态分布()EX2()DX()()EXEX21()()DXDXnn2211()()nnESDXnn1.11统计量有:(1),(3),(4),(5),(6),(7)顺序统计量有:(5)1.12顺序统计量为:-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2,3.21所以1317()20emXX1313.21(4)7.21rXX添加2.7后:顺序统计量为:-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,2.7,3.2,3.21所以781()0.62emXX1.16因为X服从正态分布故(0,1)XZN故由定理1.2.1知:222221111()()()nnniiiiiiXYZXn1.20已知~()Xtn,即有Y~N(0,1),2~()Zn使得/YXZn则22/YXZn而22~(1)Y所以2~(1,)XFn结论得证。61.22已知X~N(2.5,36),222~(1)nSn,()~(0,1)nXN(1)2222555{3044}{}69nSPSP=15522925622(/2)nxnxedxn=552925262(4/2)xxedx=0.19294(2)2{30441.33.5}PSX=2{3044}PS{1.33.5}PX=222555{}69nSP5(2.5)5{0.25}66XP=0.19294*0.638=0.1231.23(1)将21()niiX和21()nmiinX各看成一个整体,可得a=21n,b=21m原式服从2(2)(2)c=mn原式服从t(m)(3)d=mn原式服从(,)Fnm1.25令11XZ,22YQ因为211(,)XN,222(,)YN所以(0,1)ZN,(0,1)QN所以12211()niiZn,22221()niiQn由定理1.2.3知:71221112212(,)niiniiZnFnnQn即:1222221112221121()(,)()niiniinXFnnnY第二章2.2(1)~()XExp,则X的概率密度为,0(;)0,0xexfxx故的似然函数为11()(),(0,1,2,,)niiinxxniiLeexin对数似然函数为1ln()lnniiLnx令1ln()0niiLxn解得11niinxx所以的极大似然估计量1X(2)~(,)XUab,X的概率密度为1,(;,)0,axbfxabba其他由于12,,,naxxxb,等价于(1)(),naxxb。作为a,b的函数的似然函数为(1)()1,,()(,)0,nnaxxbbaLab其他对于满足条件(1)(),naxxb的任意a,b有()(1)11(,)()()nnnLabbaxx即(,)Lab在(1)(),naxbx时取到最大值()(1)()nnxx故a,b的极大似然估计值为8(1)()ˆˆ,naxbx所以a,b的极大似然估计量为(1)()ˆˆ,naXbX(3)的似然函数为1111()()()nnniiiiLxx,其中12(0,,,1)nxxx对数似然函数为1ln()ln(1)(ln)niiLnx令1ln()ln0niiLnx解得1ˆlnniinx故的极大似然估计量是1ˆlnniinX(4)的似然函数是11111()()(1)![(1)!]niiiknknnxxkkiiniiLxexekk,其中,12(,,,0)nxxx对数似然函数11ln()lnln[(1)!](1)lnnniiiiLnknnkxx令1ln()0niiLnkx得1ˆniinkkxx故的极大似然估计量是ˆkX(5)a,的似然函数为9),,,(,),(21)(1)(11axxxeeeaLnnaxnaxnniaxniiniii易知,)1()()min(xxai,当)(!xa时,),(aL取最大值,所以)1(111ˆxxaxnaxnnii的极大似然估计量为)1(1ˆXxa的极大似然估计量为)1(ˆXa(6)X的分布律为mxppCxXPxmxxm,1,0,)1(}{故似然函数为niiniiiiiixmnxnixmxmxnixmppCppCpL11)1()(])1([)(11对数似然函数)1ln()(ln)(ln)(ln111pxmnpxCpLniiniixmnii令01)(ln11pxmnpxpLdpdniinii解得p的极大似然估计值mxnmxpnii1ˆ所以p的极大似然估计量mXpˆ2.3因X的概率因数为1{}(1)kPxkpp(1,2,)kP的似然函数为111()(1)(1)(1)niiinxxnniLPppppp对数似然函数1()()(1)niiLnLpnLnpnLnpx10令()0Lnpp1111011niinnxppp有1ˆpx所以p的极大似然估计为1ˆpx2.6(1)2.142.090.05R故5ˆ0.4299*0.050.214950.0215Rd(2)分为三组2.142.102.152.132.122.102.132.102.152.122.142.132.112.142.102.112.152.101230.050.050.05RRR61(0.050.050.05)0.053ˆ0.3946*0.050.0197RRd2.72E(X)=+1-/2=0.5D(X)=1/12(b-a)1/12()(1/)1/**0.50()0.5()()2()2/**0.5iEXEnXnnXEXXYEYEXEXnnX(1)所以,是的一个有偏估计量偏差是-=-(2)取22所以,2是的一个无偏估计2.8由11212121212ˆ()()333333EEXXEXEX21232ˆ()55EEXEX1131211ˆ()22EEXEX所以,1ˆ,2ˆ,3ˆ都是的无偏估计量。又21121212145ˆ()()33999DDXXDXDX22129413ˆ()252525DDXDX2312111ˆ()442DDXDX可以看出,3ˆ()D最小。所以,估计量3ˆ最有效。2.9要使1211()niiiC

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功