最全的大学无机化学有机化学知识点

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1无机化学部分第一章物质存在的状态一、气体1、气体分子运动论的基本理论①气体由分子组成,分子之间的距离分子直径;②气体分子处于永恒无规则运动状态;③气体分子之间相互作用可忽略,除相互碰撞时;④气体分子相互碰撞或对器壁的碰撞都是弹性碰撞。碰撞时总动能保持不变,没有能量损失。⑤分子的平均动能与热力学温度成正比。2、理想气体状态方程①假定前提:a、分子不占体积;b、分子间作用力忽略②表达式:pV=nRT;R≈8.314kPa·L·mol1·K1③适用条件:温度较高、压力较低使得稀薄气体④具体应用:a、已知三个量,可求第四个;b、测量气体的分子量:pV=MWRT(n=MW)c、已知气体的状态求其密度ρ:pV=MWRT→p=MVWRT→ρMVRT=p3、混合气体的分压定律①混合气体的四个概念a、分压:相同温度下,某组分气体与混合气体具有相同体积时的压力;b、分体积:相同温度下,某组分气体与混合气体具有相同压力时的体积c、体积分数:φ=21vvd、摩尔分数:xi=总nni②混合气体的分压定律a、定律:混合气体总压力等于组分气体压力之和;某组分气体压力的大小和它在混合气体中体积分数或摩尔数成正比b、适用范围:理想气体及可以看作理想气体的实际气体c、应用:已知分压求总压或由总压和体积分数或摩尔分数求分压、4、气体扩散定律①定律:T、p相同时,各种不同气体的扩散速率与气体密度的平方根成反比:21uu=21pp=21MM(p表示密度)2②用途:a、测定气体的相对分子质量;b、同位素分离二、液体1、液体①蒸发气体与蒸发气压A、饱和蒸汽压:与液相处于动态平衡的气体叫饱和气,其气压叫做饱和蒸汽压简称饱和气;B、特点:a、温度恒定时为定值;b、气液共存时不受量的变化而变化;c、物质不同,数值不同②沸腾与沸点A、沸腾:当温度升高到蒸汽压与外界压力相等时,液体就沸腾,液体沸腾时的温度叫做沸点;B、特点:a、沸点的大小与外界压力有关;外界压力等于101kPa时的沸点为正常沸点;b、沸腾是液体表面和内部同时气化的现象2、溶液①溶液与蒸汽压a、任何物质都存在饱和蒸汽压;b、纯物质的饱和蒸汽压只与物质本身的性质和温度有关;c、一定温度下饱和蒸汽压为常数;d、溶液蒸汽压的下降:△p=p纯液体-p溶液=K·m②溶液的沸点升高和凝固点的下降a、定量描述:沸点升高△Tb=Kb·m凝固点下降△Tf=Kf·m仅适用于非电解质溶液b、注意:①Tb、Tf的下降只与溶剂的性质有关②Kb、Kf的物理意义:1kg溶剂中加入1mol难挥发的非电解质溶质时,沸点的升高或凝固点下降的度数c、应用计算:i、已知稀溶液的浓度,求△Tb、△Tfii、已知溶液的△Tb、△Tf求溶液的浓度、溶质的分子量d、实际应用:i、制冷剂:电解质如NaCl、CaCl2ii、实验室常用冰盐浴:NaCl+H2O→22°CCaCl2+H2O→-55°Ciii、防冻剂:非电解质溶液如乙二醇、甘油等③渗透压3a、渗透现象及解释:渗透现象的原因:半透膜两侧溶液浓度不同;渗透压:为了阻止渗透作用所需给溶液的额外压力b、定量描述:Vant'Hoff公式:∏V=nRT∏=VnRT即∏=cRT∏为溶液的渗透压,c为溶液的浓度,R为气体常量,T为温度。当浓度c较小时,可近似为c≈m④非电解质稀溶液的依数性a、难挥发非电解质稀溶液的蒸汽压下降、凝固点下降、沸点上升和渗透压变化都与溶液中所含的种类和性质无关,只与溶液的浓度有关,总称溶液的依数性,也叫非电解质稀溶液的通性。b、注意:上述非电解质稀溶液的有关计算公式用于电介质稀溶液时要乘以相应电解质中溶液中的质点数;但浓溶液不能用上述公式计算。三、胶体1、胶体的组成:分散相+分散介质+稳定剂2、胶体的性质:①光学性质:丁达尔效应————胶团对光的散射现象;②动力性质:布朗运动—————胶团粒子的不规则运动;③电学性质:电泳现象—————胶粒在电场下的不规则运动3、溶胶的稳定性①动力学稳定性:胶团运动②聚集稳定性:胶粒的带电性使同种电荷有排斥作用;③热力学稳定性:胶体粒子因很大的比表面积而能聚集成大颗粒4、胶体的聚沉———关键:稳定性的去除①加电解质,如明矾使水净化(吸附电荷);②与相反电性的溶胶混合;③加热第二章化学动力学初步一、化学反应速率①表达:化学反应速率可用反应物或生成物的浓度随时间的变化率来表示。②数学表达式:对于反应A→B:vA=tcA或tcvBB注:以反应物浓度减少和生成物浓度增大和生成物浓度增大表示是符号不同;用不同物质浓度来表示反应速率不同。2、反应进度①定义:对于化学计量方程式,若定义dBBdnv1,称为反应进度。表示物质变化量除以相应的计量系数。②表达式:BBBBnnn0,B表示化学计量系数。4③表式意义:表示一个反应进行的程度;其纲量为摩尔;mol1指按化学计量方程式进行一个单位的反应④注意:反应进度的表示与计量方程式的写法有关。3、速率方程和速率常数①速率方程:把反应物浓度和反应速率联系起来的数学表达式。对于反应:aA+Bb→gG+hH反应速率v=k·cm(A)·cn(B),即为速率方程式,式中的常数k即为反应速率常数。②反应速率常数:a、物理意义:k只取决于反应的本性(Ea,活化能)和温度;b、注意事项:k是温度的函数,与浓度的大小无关;k的单位即量纲,随速率方程变化而变化;k一般由实验测得,只有基元反应可以直接写出。③速率方程的实验测定作图法:由浓度—时间动力学曲线可得到斜率k及速率常数;初速法:可得到个反应的反应级数4、基元反应和非基元反应①基元反应:反应物分子在有效碰撞过程中经过一次化学变化就能转化为产物的反应;注意:由一个基元反应构成的化学反应又称简单反应;只有基元反应才能根据质量作用定律直接写出速率方程②非基元反应:反应分子需经过几步反应才能转化为反应产物的反应。注意:非基元反应的速率方程不能根据反应式写出速率方程,必须根据实验测定的结果有反应历程推出,并验证;复杂的非基元反应→分成若干个基元反应→最慢一步发宁作为苏空反应步骤5、反应级数①定义:速率方程中各反应物浓度的指数;②说明:如v=k·c)()(BcAnm则反应物A的反应级数为m,反应物B的反应级数为n;总反应级数为m+n③注意:a、反应级数表示了反应物浓度对反应速率影响的大小关系;反应级数只能由实验测定;b、反应级数可以是整数、分数、零或负数;c、零级反应的反应速率与反应物浓度无关④反应级数的确定基本方法a、测定反应物浓度c随时间t的变化;b、作c-t图像,求个时刻的速度v;c、分析v与浓度c的变化关系,确定m、n5二、化学反应速率理论1、碰撞理论①主要内容:反应物分子间的相互碰撞是反应进行的必要条件,反应物分子碰撞频率越高,反应速率越快,但并非每次碰撞都能引起反应发生,能发生化学反应的碰撞为有效碰撞②有效碰撞发生的条件:a、相互碰撞的分子应有适合的碰撞取向;b、相互碰撞的分子必须具有足够的能量。把能够发生有效碰撞的分子称为活化分子③根据碰撞理论,增大化学反应速率的方法:a、增大单位时间内分子碰撞的总数————增大浓度;b、增大碰撞总数中有效碰撞的百分数———升高温度④活化能:碰撞理论认为,活化能是活化分子的平均能量与反应物分子的平均能量之差2、过渡态理论①主要内容:化学反应并不是通过简单碰撞就能完成的,而是在反应物到生成物的过程中经过一个高能的过渡态,处于过渡态的分子叫做活化络合物。活化络合物是一种是一种高能量的不稳定的反应物原子组合体,它能较快的分解为新的能量较低的生成物。②活化能Ea:过渡态理论认为,活化能是反应物分子能量与处于过渡态的活化络合物分子的平均能量之差3、活化能:决定反应速率的内在因素①活化能在一定温度范围内可认为是常数;②活化能对反应速率的影响很大;Ea越小,反应速率越大;③催化剂可以改变反应的活化能,故可以降低化学反应速率三、影响化学反应速率的因素1、浓度:由速率方程v=k·c)()(BcAnm知,浓度对化学反应速率有一定的影响压强对化学反应速率与的影响是通过浓度来实现的。2、温度①范特霍夫规则:对于一般的化学反应,温度每升高10K,反应速率增加2-4倍②阿伦尼乌斯公式:a、表达式:RTEaAek,其中,A为特征常数,既指前因子;Ea为经验常数即活化能,k为反应速率常数,R为摩尔气体常数8.3141KmolJ,e为自然对数底,该公式的对数形式为RTEAka303.2lglgb、应用:(1)求某一温度下某反应的k:6作图法:lgk对T1作图可得一直线关系;斜率:REa303.2;截距lg斜率大的活化能Ea大,反应速率随温度的升高增加较快二点法:不同温度下反应速率常数k的计算(2)由lgk-T1的图像得出的结论:i、同一反应,低温低和高温时变化同样的温度,低温时反应速率变化大;即一个反映在低温时速率随温度变化比高温区更显著ii、不同反应,变化相同的温度时,Ea大的反应k变化大。升高温度有利于aE大的反应3、催化剂及基本特征a、催化剂和催化作用:正催化剂;负催化剂(阻化剂)b、催化剂的特征:i、催化剂只改变反应速率,不改变反应方向;ii、催化剂同等程度地改变正逆反应的活化能,同时提高正逆化学反应速率;iii、催化剂具有一定的选择性;iv、催化剂在反应前后不发生变化,但在反应过程中会变化第三章化学热力学初步一、热力学定律及基本定律1、基本概念①环境与体系a、体系i、定义:人为划出的作为研究对象的一部分空间。ii、分类:敞开体系(与外界可进行物质能量交换)封闭体系(只有能量交换)孤立体系(物质、能量均不与外界交换)b、环境:出体系以外的其他部分,与体系存在能量交换②功和热:a、热(Q):i、系统与环境由于温差而传递的能量Q﹥0,体系从环境中吸热;Q﹤0,体系从环境中放热;物体之间可通过功、热、辐射三种形式交换能量ii、热容、比热容、摩尔热容b、功:i、热力学中除热外,其它各种被传递的能量统称为功气体膨胀做功:W=-pΔV环境对体系做功,W﹥0;体系对环境做功,W﹤0③状态及状态函数a、状态:体系的某种存在状况。它由一系列的物理量决定,如气体的p、V、T等,一旦体系处于一定的状态,体系的所有其它性质都有确定值b、状态函数:在特定状态下,某一性质具有唯一值,则称该状态为状态函数。7c、结论:状态一定值一定,殊途同归变化同,周而复始变化零。④过程与途径a、过程:体系变化状态变化的经过b、途径:变成一个过程所经历的具体步骤c、注意:体系状态函数的变化只取决于体系始终变化的过程,而与变化的路径无关⑤广度性质与强度性质a、广度性质:及容量性质,与体系中物质的量成正比的量,具有加和性b、强度性质:数值上不随体系中物质总量的变化而变化的物理量,不具加和性⑥热力学标准态:当系统中各种气态物质的气压均为标准压力p,固态和液态物质表面承受的压力等于压力p,溶液中各物质的浓度均为11Lmol时,我们就说物质处于热力学标准态。注:热力学标准态并未对温度有限制,热和温度都有热力学标准态。2、热力学定律:①热力学第一定律a、实质:能量守恒与转化定律b、数学表达式:WQUc、注意:i、Q与W的符号;ii、功和热不是状态函数,但两者之和是状态函数②热力学第二定律:揭示了宏观过程的方向与限度熵增加原理:孤立体系有自发向混乱度增加的方向变化的趋势③热力学第三定律:任何纯物质的完整晶体在T=0K时的熵值为零二、化学热力学四个重要的状态函数1、热力学能(内能)①符号U,是系统内各种形式能量的总和②内能的变化△Ua、对于孤立体系,环境改变,内能不变;对于非体系,0UUUtb、标准摩尔反应热力学能变化(反应内能变化):符号△mrU,表示反应是在热力学标准态下进行的,其值的大小与化学反应方程式的书写一一对应。2、焓①焓a、定义:H≡U=pVb、焓变:VUHHHp终态始态c、符号规定:放热反应,△H﹤0;吸热反应,△H﹤0d、单位:kJ·mol18e、表式意义:化学反应在等温等压下发生,不做其它功时,化学反应的热效

1 / 59
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功