一、二次函数的概念一般地,如果y=ax2+bx+c(a、b、c是常数,a≠0),那么y叫做x的二次函数.._______)21(1122kxkykk是二次函数,则、函数例①②由①,得由②,得21k1,2121kk1k∴._____1)1(2mmxxmymm是二次函数,则练习:函数2解:根据题意,得-12102212kkk二次函数的几种表达式:)0(2aaxy)0(2acaxy)0()(2ahxay)0()(2akhxay)0(2acbxaxy)0(44)2(22aabacabxay(顶点式)(一般式)xyo二、二次函数的图象及性质xyxy抛物线开口方向顶点坐标对称轴最值a0a0增减性a0a02axycaxy22)(hxaykhxay2)(cbxaxy2abacabxay44)2(22二次函数的图象及性质当a0时开口向上,并向上无限延伸;当a0时开口向下,并向下无限延伸.(0,0)(0,c)(h,0)(h,k))44,2(2abacababx2直线y轴直线hx直线hx在对称轴左侧,y随x的增大而减小在对称轴右侧,y随x的增大而增大在对称轴左侧,y随x的增大而增大在对称轴右侧,y随x的增大而减小xyxy00minyx时,00maxyx时cyxmin0时,cyxmax0时0minyhx时0maxyhx时kyhxmin时kyhxmax时abacyabx4422min时,abacyabx4422max时,y轴例2、函数的开口方向,顶点坐标是,对称轴方程是.32212xxy解:32,1,21cba0,a开口向上612141322144412121222abacab又∴顶点坐标为:)61,1(对称轴方程是:1x向上)61,1(1x练习:2.将函数y=x2+6x+7进行配方正确的结果应为()2)3(A.2xy2)3(B.2xy2)3(C.2xy2)3(D.2xyC4、二次函数图象的顶点坐标和对称轴方程为()A、(1,-2),x=1B、(1,2),x=1C、(-1,-2),x=-1D、(-1,2),x=-12)1(2xy2、二次函数的最值为()A、最大值1B、最小值1C、最大值2D、最小值23、抛物线的对称轴及顶点坐标分别是()A、y轴,(0,-4)B、x=3,(0,4)C、x轴,(0,0)D、y轴,(0,3)342xyDA练习:1、抛物线的顶点坐标是()A、(-1,13)B、(-1,5)C、(1,9)D、(1,5)7422xxy322xxyDD练习:1.抛物线y=x2向上平移2个单位,再向右平移3个单位可得到抛物线。1162xxy2)3(2xy三、二次函数y=ax2+bx+c(a≠0)的系数a,b,c,△与抛物线的关系aa,bc△a决定开口方向:a>0时开口向上,a<0时开口向下a、b同时决定对称轴位置:a、b同号时对称轴在y轴左侧a、b异号时对称轴在y轴右侧b=0时对称轴是y轴c决定抛物线与y轴的交点:c>0时抛物线交于y轴的正半轴c=0时抛物线过原点c<0时抛物线交于y轴的负半轴△决定抛物线与x轴的交点:△>0时抛物线与x轴有两个交点△=0时抛物线与x轴有一个交点△<0时抛物线于x轴没有交点8xy练习:1、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为()A、a0,b0,c0B、a0,b0,c0C、a0,b0,c0D、a0,b0,c0xy2、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为()A、a0,b0,c=0B、a0,b0,c=0C、a0,b0,c=0D、a0,b0,c=0xy3、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为()A、a0,b=0,c0B、a0,b0,c0C、a0,b=0,c0D、a0,b=0,c0BACooo4.二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①abc0;②b2-4ac0;③b+2a0;④a+b+c0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③a0,b0,c0b+2a02a-b练习:A练习:3.抛物线的图像如下,则满足条件a>0,b<0,c<0的是()ADCBD-2四、二次函数y=ax2+bx+c(a≠0)的几个特例:1、当x=1时,2、当x=-1时,3、当x=2时,4、当x=-2时,y=a+b+cy=a-b+cy=4a+2b+cy=4a-2b+c…………………………xyo1-12练习:二次函数y=ax2+bx+c(a≠0)的图象如上图所示,那么下列判断正确的有(填序号).①、abc0,②、b2-4ac0,③、2a+b0,④、a+b+c0,⑤、a-b+c0,⑥、4a+2b+c0,⑦、4a-2b+c0.③⑦2、二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列判断不正确的是()①、abc0,②、b2-4ac0,③、a-b+c0,④、4a+2b+c0.xyo-123、二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系内的大致图象是()xyoxyoxyoxyo(C)(D)(B)(A)④C中考链接:2yaxbxc1.(北京)如果b>0,c>0,那么二次函数的图象大致是()A.B.C.D.D4、抛物线y=ax2+bx+c(a≠0)的图象经过原点和二、三、四象限,判断a、b、c的符号情况:a0,b0,c0.xyo=5、抛物线y=ax2+bx+c(a≠0)的图象经过原点,且它的顶点在第三象限,则a、b、c满足的条件是:a0,b0,c0.xyo=中考链接:2.(05浙江丽水)如图,抛物线的顶点P的坐标是(1,-3),则此抛物线对应的二次函数有()(A)最大值1(B)最小值-3(C)最大值-3(D)最小值1B一般式:解:依题意把点(2,0)(-6,0)(0,3)可得:4a+2b+c=0c=336a-6b+c=0解得:a=b=-1c=3所以二次函数的解析式为:413412xxy顶点式:解:因为二次函数的对称轴为x=-2,所以可设函数的解析式为:y=a(x+2)2+k,把点(2,0)(0,3)代入可得:16a+k=04a+k=3解得a=k=4所以二次函数的解析式为:3412xxy41两点式:解:因为抛物线与x轴相交的两个点的坐标为(2,0)(-6,0),可设该函数的解析式为:y=a(x+6)(x-2),把点(0,3)代入得:3=-12a解得:a=所以二次函数的解析式为:413412xxy中考链接:3.(05常州)已知抛物线的部分图象如图,则抛物线的对称轴为直线x=,满足y<0的x的取值范围是,将抛物线向平移个单位,则得到抛物线562xxy31<X<5下1中考链接:4.(05梅州)根据图1中的抛物线,当x时,y随x的增大而增大,当x时,y随x的增大而减小,当x时,y有最大值。图1206xy<2>2=223-2-6拓展:若抛物线y1=a1x2+b1x+c1与以上抛物线关于x轴对称,试求y1=a1x2+b1x+c1的解析式。6.二次函数y=ax2+bx+c的图象如图所示,求此函数解析式。练习:34121xxy练习:7.如图,隧道的截面由抛物线AED和矩形ABCD组成,矩形的长BC为8米,宽AB为2米,以BC所在的直线为x轴,以BC的中垂线为y轴,建立直角坐标系。y轴是抛物线的对称轴,顶点E到坐标原点的距离为6米。(1)求抛物线的解析式;6412xy(2)现有一货车卡高4.2米,宽2.4米,这辆车能否通过该隧道?请说明理由。解:把x=1.2代入中,解得y=5.64。∵4.2<5.64∴这辆车能通过该隧道货车6412xy(3)若该隧道内设双行道,现有一货车卡高4.2米,宽2.4米,这辆车能否通过该隧道?请说明理由。货车解:把x=2.4代入中,解得y=4.56。∵4.2<4.56∴这辆车能通过该隧道6412xy•本题12分)某企业信息部进行市场调研发现:•信息一:如果单独投资A种产品,则所获利润yA(万元)与投资金额x(万元)之间存在正比例•函数关系:yA=kx,并且当投资5万元时,可获利润2万元;•信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,并且当投资2万元时,可获利润2.4万元;当投资4万元,可获利润3.2万元。•(1)请分别求出上述的正比例函数解析式与二次函数解析式;•(2)如果企业同时对A、B两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少。中考链接:6.(05十堰)张大伯准备用40m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形的羊圈。请你求出张大伯矩形羊圈的面积;请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计?并说明理由。