图像处理技术在医学领域的应用摘要:介绍了图像处理技术在医学领域的发展,阐释了图像分割、图像融合和图像重建技术在医学领域的发展。提出了图像处理技术发展所面临的相关问题及其发展方向。关键词:图像处理技术图像分割图像融合图像重建图像处理技术是20世纪60年代发展起来的一门新兴学科。近几十年来,由于大规模集成电路和计算机科学技术的迅猛发展,离散数学理论的创立和完善,以及军事、医学和工业等方面需求的不断增长,图像处理的理论和方法的更加完善,已经在宇宙探测、遥感、生物医学、工农业生产、军事、公安、办公自动化、视频和多媒体系统等领域得到了广泛的应用,成为计算机科学、信息科学、生物学、医学等学科研究的热点。图像处理在医学界的应用非常广泛,无论是病理研究还是临床诊断都大量采用图像处理技术。它因直观、无创伤、方便安全等优点而受到人们青睐。图像处理首先应用于细胞分类、染色体分类和放射图像分析等,20世纪70年代图像处理在医学上的应用有了重大突破,1972年X射线断层扫描CT得到实用:1977年白血球自动分类仪问世:1980实现了CT的立体重建。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理,医学图像在临床诊断、教学科研等方面有重要的作用。目前的医学图像主要包括CT(计算机断层扫描)图像、MRI(核磁共振)图像、B超扫描图像、数字X光机图像、X射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。但由于医学成像设备的成像机理、获取条件和显示设备等因素的限制,使得人眼对某些图像很难直接做出准确的判断。计算机技术的应用可以改变这种状况,通过图像变换和增强技术来改善图像的清晰度,突出重点内容,抑制次要内容,来适应人眼的观察和机器的自动分析,这无疑大大提高了医生临床诊断的准确性和正确性。什么是医学图像处理医学图像处理就是利用计算机系统对生物学图像进行的具有临床医学意义的处理和分析。医学图像处理是一个和复杂的过程。医学图像作为一种信息源,也和其他的有关病人的信息一样,是医生做出判断时的依据。医生在判断医学图像时,要把图像与其他解剖学、生物学和病理学等知识作对照,还要根据经验来捕捉图像中的有重要意义的细节和特征。所以要从一副或几副医学图像中判断出是否有异常,或是属于什么疾病,如果不是训练有素的医生,是难以发现图像上的异常的。所以对医学领域的图像处理显得尤为重要。图像处理技术及其在医学领域的应用(一)图像分割图像分割就是把图像中具有特殊涵义的不同区域分开来,这些区域使互不相交的每一个区域都满足特定区域的一致性。它是图像处理与图像分析中的一个经典问题。比如基于三维可视化系统结合fastmarching算法和watershed变换的医学图像分割方法,能得到快速、准确的分割结果。图像分割同时又是进行三维重建的基础,分割的效果直接影响到三维重建后模型的精确性,分割可以帮助医生将感兴趣的物体(病变组织等)提取出来,帮助医生能够对病变组织进行定性及定量的分析,进而提高医生诊断的准确性和科学性。由于解决和分割有关的基本问题是特定领域中图像分析实用化的关键一步,因此,将各种方法融合在一起并使用知识来提高处理的可靠性和有效性是图像分割的研究热点。(二)图像融合图像融合的主要目的是通过对多幅图像间的冗余数据的处理来提高图像的可读性。对多幅图像问的互补信息的处理来提高图像的清晰度。利用可视化软件对多种模态的图像进行图像融合,可以准确地确定病变体的空间位置、大小、几何形状和它与周围生物组织之间的空间关系,从而及时高效地诊断疾病。目前的图像融合技术可以分为两类:一类是以图像像素为基础的融合方法:另一类是以图像特征为基础的融合方法。以图像特征为基础的融合方法原理上不够直观且算法复杂,但是实现效果较好。在图像融合技术研究中,不断有新的方法出现,其中小波变换、基于有限元分析的非线性配准以及人工智能技术在图像融合中的应用将是今后图像融合研究的热点与方向。随着三维重建显示技术的发展,三维图像融合技术的研究也越来越受到重视。(三)图像重建图像重建是从数据到图像的处理,即输入的是某种数据,而经过处理后得到的结果也是图像。CT是图像重建处理的典型应用实例。目前,图像重建与计算机图形学相结合,把多个二维图像合成为三维图像,并加以光照模型和各种渲染技术,能生成各种具有强烈真实感的图像。二、图像处理技术在医学领域未来发展方向当前,医学图像处理面临的主要任务是研究新的处理方法,构造新的处理系统。未来发展方向大致可归纳为以下几点:(一)图像处理技术的发展将围绕研制高清晰度医学显示设备、更先进的医学成像设备,向着高速、高分辨率、立体化、多媒体化、智能化和标准化方向发展。(二)图像、图形相结合,朝着三维成像或多维成像的方向发展。(三)新理论与新算法研究。在图像处理领域近年来引入了一些新的理论并提出了一些新的算法,如小波分析(Wavelet)、分形几何(Fraclall、形态学(Morphology)、遗传算法(GeneticA190rithms,GA)、人工神经网络(ArtificialNeuralNet-works)等。这些理论及建立在其上的算法,将会成为今后图像处理理论与技术的研究热点。图像处理技术经过初创期、发展期、普及期及广泛应用几个阶段,如今已是医学人士竞相研究并在医学领域广泛应用的一门科学。随着科学技术的进步以及医学界需求的不断增长,图像处理科学无论是在理论上还是实践上,将会取得更大的发展。