2013年舟山市中考数学试卷及答案(word解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

-1-浙江省舟山市2013年中考数学试卷一、选择题(共10小题,每小题3分,满分30分,请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)(2013•佛山)﹣2的相反数是()A.2B.﹣2C.D.考点:相反数.分析:根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.解答:解:﹣2的相反数是2,故选:A.点评:此题主要考查了相反数,关键是掌握相反数的定义.2.(3分)(2005•浙江)如图,由三个小立方体搭成的几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面看可得到两个相邻的正方形,故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(3分)(2013•舟山)据舟山市旅游局统计,2012年舟山市接待境内外游客约2771万人次.数据2771万用科学记数法表示为()A.2771×107B.2.771×107C.2.771×104D.2.771×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:2771万=27710000=2.771×107.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2013•嘉兴)在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是()-2-A.1.71B.1.85C.1.90D.2.31考点:众数.分析:根据众数的概念:一组数据中出现次数最多的数据叫做众数求解即可.解答:解:数据1.85出现2次,次数最多,所以众数是1.85.故选B.点评:考查众数的概念.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.5.(3分)(2013•嘉兴)下列运算正确的是()A.x2+x3=x5B.2x2﹣x2=1C.x2•x3=x6D.x6÷x3=x3考点:同底数幂的除法;合并同类项;同底数幂的乘法.分析:根据合并同类项的法则、幂的乘方及积的乘方法则、同底数幂的除法法则,分别进行各选项的判断即可.解答:解:A、x2与x3不是同类项,不能直接合并,原式计算错误,故本选项错误;B、2x2﹣x2=x2,原式计算错误,故本选项正确;C、x2•x3=x5,原式计算错误,故本选项错误;D、x6÷x3=x3,原式计算正确,故本选项正确;故选D.点评:本题考查了同底数幂的除法、幂的乘方与积的乘方,解答本题的关键是熟练掌握各部分的运算法则.6.(3分)(2013•嘉兴)如图,某厂生产横截面直径为7cm的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长度为()A.cmB.cmC.cmD.7πcm考点:弧长的计算.分析:根据题意得出圆的半径,及弧所对的圆心角,代入公式计算即可.解答:解:∵字样在罐头侧面所形成的弧的度数为45°,∴此弧所对的圆心角为90°,由题意可得,R=cm,则“蘑菇罐头”字样的长==π.故选B.点评:本题考查了弧长的计算,解答本题关键是根据题意得出圆心角,及半径,要求熟练记-3-忆弧长的计算公式.7.(3分)(2013•舟山)下列说法正确的是()A.要了解一批灯泡的使用寿命,应采用普查的方式B.若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C.甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定D.“掷一枚硬币,正面朝上”是必然事件考点:全面调查与抽样调查;方差;随机事件;概率的意义.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、要了解一批灯泡的使用寿命,应采用抽样调查的方式,故本选项错误;B、若一个游戏的中奖率是1%,则做100次这样的游戏不一定会中奖,故本选项错误;C、若方差=0.1,=0.2,则甲组数据比乙组数据稳定,说法正确,故本选项正确;D、“掷一枚硬币,正面朝上”是随机事件,故本选项错误;故选C.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.(3分)(2013•嘉兴)若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1B.直线x=﹣2C.直线x=﹣1D.直线x=﹣4考点:二次函数的性质;一次函数图象上点的坐标特征.分析:先将(﹣2,0)代入一次函数解析式y=ax+b,得到﹣2a+b=0,即b=2a,再根据抛物线y=ax2+bx的对称轴为直线x=﹣即可求解.解答:解:∵一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),∴﹣2a+b=0,即b=2a,∴抛物线y=ax2+bx的对称轴为直线x=﹣=﹣1.故选C.点评:本题考查了一次函数图象上点的坐标特征及二次函数的性质,难度适中.用到的知识点:点在函数的图象上,则点的坐标满足函数的解析式;二次函数y=ax2+bx+c的对称轴为直线x=﹣.-4-9.(3分)(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8C.2D.2考点:垂径定理;勾股定理;圆周角定理.专题:探究型.分析:先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r﹣2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE中,根据勾股定理即可求出CE的长.解答:解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选D.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.-5-10.(3分)(2013•舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(﹣5,4),B(2,﹣3),A⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点()A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点考点:一次函数图象上点的坐标特征.专题:新定义.分析:如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),先根据新定义运算得出(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),则x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上.解答:解:∵对于点A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么C⊕D=(x3+x4)+(y3+y4),D⊕E=(x4+x5)+(y4+y5),E⊕F=(x5+x6)+(y5+y6),F⊕D=(x4+x6)+(y4+y6),又∵C⊕D=D⊕E=E⊕F=F⊕D,∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),∴x3+y3=x4+y4=x5+y5=x6+y6,令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上,∴互不重合的四点C,D,E,F在同一条直线上.故选A.点评:本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2013•嘉兴)二次根式中,x的取值范围是x≥3.考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.解答:解:根据题意得:x﹣3≥0,解得:x≥3.故答案是:x≥3.点评:本题考查的知识点为:二次根式的被开方数是非负数.12.(4分)(2013•嘉兴)一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为.考点:概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.-6-解答:解:∵布袋中装有3个红球和4个白球,∴从袋子中随机摸出一个球,这个球是白球的概率为:=.故答案为:.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(4分)(2010•鞍山)因式分解:ab2﹣a=a(b+1)(b﹣1).考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,再运用平方差公式继续分解因式.解答:解:ab2﹣a,=a(b2﹣1),=a(b+1)(b﹣1).点评:本题考查了提公因式法与公式法分解因式,关键在于提取公因式后要进行二次因式分解,因式分解一定要彻底,直到不能再分解为止.14.(4分)(2013•嘉兴)在同一平面内,已知线段AO=2,⊙A的半径为1,将⊙A绕点O按逆时针方向旋转60°得到的像为⊙B,则⊙A与⊙B的位置关系为外切.考点:圆与圆的位置关系;旋转的性质.专题:计算题.分析:根据旋转的性质得到△OAB为等边三角形,则AB=OA=2,而⊙A、⊙B的半径都为1,根据圆与圆的位置关系即可判断两圆的位置关系.解答:解:∵⊙A绕点O按逆时针方向旋转60°得到的⊙B,∴△OAB为等边三角形,∴AB=OA=2,∵⊙A、⊙B的半径都为1,∴AB等于两圆半径之和,∴⊙A与⊙B外切.故答案为外切.点评:本题考查了圆与圆的位置关系:两圆的半径分别为R、r,两圆的圆心距为d,若d=R+r,则两圆外切.也考查了旋转的性质.15.(4分)(2013•嘉兴)杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为﹣=3.考点:由实际问题抽象出分式方程.分析:先分别求出提速前和提速后由杭州到北京的行驶时间,再根据由杭州到北京的行驶时间缩短了3小时,即可列出方程.解答:解:根据题意得:-7-﹣=3;故答案为:﹣=3.点评:此题考查了由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系并列出方程.16.(4分)(2013•舟山)如图,正方形ABCD的边长为3,点E,F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程为6.考点:正方形的性质;轴对称的性质.分析:根据已知中的点E,F的位置,可知入射角的正切值为,通过相似三角形,来确

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功