1用友智能工厂解决方案在工业4.0和中国制造2025的大背景下,用友致力于向制造业客户提供智能制造的整体解决方案,解决方案全景如下:整体解决方案由智能化生产、智能化管理和产业链互联三个层面构成,前两个层面立足于企业自身,以智能工厂为建设目标,实习企业机体自身的智能化,而产业链互联则是以互联网技术为基础,将企业融入到产业链的整体生态环境中,逐步实现制造资源的服务化和云化,并与生态系统中的所有要素协同互动,实现企业的智慧化。智能制造是一个比较宽泛的概念,本方案以智能工厂为建设目标,特指以物联网、互联网、大数据等技术为基础,集成各类制造资源,通过对生产制造及物流系统的升级改造,逐步实现制造过程、物流驱动、控制模式、决策方式等方面的智能化,构建起体系化的智能化的制造系统,打造数字化、透明化的智能工厂。智能工厂解决方案的整体架构如下:1.1智能数据采集平台智能数据采集平台是智能制造系统的基础平台,是衔接生产物流现场与智能制造系统的接口平台,主要功能是利用物联网技术连接产品、设备及控制系统,建立智能制造系统与生产现场之间的通路,向智能制造系统提供生产现场实时数据并接收智能制造系统发出的指令。同时,通过统一的集成化数据采集平台,可以将不同的现场设备及控制系统的数据信息整合在一起,从而为生产现场的协同、柔性、高效提供可能。智能数据采集平台由以下关键要素构成:要素主要内容产品及物料标识目标:产品及物料可由信息系统识别使用的载体主要是:条码、二维码、射频芯片、电子标签等智能设备生产现场常见的可接入设备包括:CNC/DNC设备、传感器、机器人、检测设备、控制设备、工业仪表、计量器具、摄像设备、物流设备等控制系统实时数据库、PLC、嵌入式系统、数据采集与监视控制系统(SCADA)、分布式控制系统(DCS),现场总线控制系统(FCS)等终端采集设备扫描枪、PDA、工业平板电脑、触摸屏等接口常见的接口方式:TCP/IP、RS232串口、RS485串口、USB、无线接入等智能数据采集平台构建的总体工作内容如下:设备的智能化改造物料标识基础网络构建设备集成及取数接口开发数据存储智能数据采集平台依赖于生产现场的智能化,主要表现在现场生产设备及检测设备的智能化改造,具体可以采取的手段包括:用数字化智能化可编程控制设备替换传统设备,CNC设备及机器人的使用逐步普及,一方面使生产线更加柔化,另一方面也可以提供更多的运行状态数据;传统设备的智能化改造,通过加装位置、温度、压力、计数等各类传感器改造现有设备,使现有设备达到一定程度的智能化,满足读取及监控的需求;在设备及产线旁加装终端电脑(工业平板电脑),部署终端应用以方便人工采集设备运行及加工数据。让加工检测运输等设备及软件系统能够认识物料是实现智能数据采集的另一项基础工作,因此,需要用一定的技术手段标识物料,标识的载体可以是一维条码、二维条码、RFID芯片、IC/ID卡等,其中,以RFID为代表的非接触主动采集技术日益成熟并广泛应用。标识物料的方式也可以是单品身份证或批次流转卡,对于课题研制产品、技术验证产品及主体单位需求的定型量产产品,要实现单品身份证管理,并且达到产品的全生命周期管理。对于量产民品,可根据需要选择采用单品身份证或批次流转卡管理。基础网络构建要求能够覆盖整个生产及物流现场,采用无线网络及有线网络,物理隔离涉密网及非涉密网,通过网络总线接入及分布式部署的方式,将各类设备集成到统一的网络之中,具体的网络建设规划可参考本规划的专门章节。设备集成可通过访问设备实时数据库、PLC、嵌入式系统等方式,通过开放的输出端口读取所需的设备运行数据。智能设备一般都有开放的对外接口,可通过串口、USB端口直接访问硬件系统,或者通过开放的服务接口访问设备的控制系统,但这类接口的访问和集成目前没有统一的标准,需要分别与设备供应商合作完成。通过数据采集平台采集的各类数据信息需要存储在服务器上以备其他应用使用,而数据采集平台获取数据往往具有大数据量及高并发的特点,因此,在数据库服务器及数据库系统选择时要充分考虑到这些因素,充分利用目前互联网应用中数据存储的实现技术,更好的支撑应用需求。智能数据采集平台是智能制造系统的基础平台,所有智能制造的应用都依赖于数据采集,只有对现场情况的充分掌握才能确保各类智能化应用有准确的数据输入和及时准确的信息反馈,从而实现业务管理的闭环。1.2智能运营管理平台智能运营管理平台构建在智能数据采集平台之上,所有管理都必须以数据为基础,由数据来支持管理决策。而智能运营管理的范围涉及企业自身运营管理的各个方面,而且呈现出碎片化的特征,企业运营管理的重心会随着管理升级不断改变,但无论如何,所有的运营管理都是围绕着产品的生命周期展开的,只是着手的先后顺序在个体企业间有所差别。1.2.1协同设计产品设计是产品生命周期的起始,在需求个性化的社会经济环境下,产品设计的重要性日益突出。产品设计本身都会有专业的软件产品和技术支撑,而以下两个特征是体现产品设计与整个体系衔接的智能化的标志:设计制造一体化设计的最终目标是指导制造实现,而设计与制造体系衔接的紧密度和顺畅度也是体现设计软件是否融入智能制造体系的重要标志。设计制造一体化包括两个方面:基础数据的一体化:所有设计数据要求与制造系统无缝互通,在统一编码、统一物料库基础上实现数据协同;设计过程的一体化:研发项目管理、设计变更以及消息互动等所有研发过程都要与制造系统衔接集成,避免设计活动孤立于制造体系,实现以产品生命周期为主线的设计制造业务一体化协同协同设计在个性化定制及智能制造的业务环境下,设计活动不再由一个单一的设计部门完成,与第三方以及外部设计单元之间的协同也逐步常态化,尤其在工业互联网及云设计环境下,设计的协同能力也是智能设计的重要特征。1.2.2智能排程基于有限能力的排程是衔接主生产计划与现场作业执行的工具,其基本功能由以下几部分构成:生产计划导入:从计划系统获取生产需求排程模型构建:根据实际生产执行的情况建立排程模型,定义排程计算中需要考虑的影响因素和算法,常见的有TOC、JIT等排程模型排程算法执行:根据排程模型和生产需求计算各个工位起止时间和设备占用,生成可由现场执行的排程结果排程结果发布:排程结果传递到生产执行系统现场执行调度:根据排程结果驱动现场执行高级排程(APS)系统往往会以独立工具或独立软件产品的形态提供,其重点聚焦在排程建模和排程算法方面,先进的排程工具的确能够提供丰富的排程算法和友好的交互界面,但是,排程应该基于对现场执行情况的实时掌控,排程结果与排程的执行必须是闭环并可随时调整修正的,否则,就失去了排程的实践意义。而独立的排程系统由于无法获知设备、作业、能源、材料、人员等各个方面的全面信息,难以做到综合全局的排程。从实际的排程应用需求来看,每个企业的排程算法并不会特别复杂,而排程的难点往往在于排程结果与现场实际执行之间的脱节,这会导致排程工作流于形式,并不能成为调度和安排现场工作的依据。智能排程是智能制造系统之中的集成工具,与智能数据采集平台紧密结合,实时掌握生产动态,随时调整排程结果,做到与生产现场完全联动,运行顺畅后就会成为整个生产现场的核心调度系统,结合智能制造系统的其他工具,实现真正意义上的自主生产和智能制造,是建设数字化无人工厂的中枢系统。1.2.3智能调度智能调度是将工序作业计划变为作业指令,并驱动现场按指令运作的活动,智能调度要解决以下两个重要问题:现场作业调度的形式车间现场的作业模式多种多样,现场作业调度的具体形式也会比较丰富,但抽象整理后,都会集中到以下基本形式:单品身份证:为每一个流转的产品标识唯一的身份信息,生产调度过程管理到每个具体的单品工艺流转卡:工艺流转卡往往以批次为管理单元,极端情况下也会以将批量降低到1,成为单品工艺流转卡派工报工(工票):将生产任务分解为单个碎片的工作任务,由工人领取并完成,派工报工往往会与计件工资一并使用固定地点/流水线装配:组装工艺的调度模式,管理的重点往往集中在记录组装关系以便后续品质追溯上述集中方式在一个工厂或车间中并非孤立存在,经常是几种形态并存,但管理模式一般会倾向于趋同,将不同的形式融入到一种主流模式中,尽量避免差异,降低管理成本。作业指令发布到现场生产指令形成后,需要有一定的技术手段发送到现场,发布的内容主要包括:工艺指导文件、数控文件、嵌入式软件等。在设备集中型的车间,可以考虑通过数字化手段将指令及相关文件信息发布到DCS或DNC/CNC,控制设备运行;而在人工为主的车间,生产指令的发布需要通过一定设计的载体。不论如何,发布的目标是向生产现场准确发布指令信息,以便现场正确执行。1.2.4智能物流与制造系统相关的物流主要是厂内配送物流和车间作业物流,不论哪种物流,其主要目标是要在恰当的时间将恰当的物料送到恰当的位置,保证生产环节不发生停工待料。立体仓库和AGV是实现智能物流的硬件平台,WMS是其软件平台,二者结合使用,可以根据指令达到上述目标,但是,重点在于“指令”本身,这个指令就是要告诉系统:什么时候什么位置需要什么物料,如果没有集成化的智能制造系统,只是靠人为发出指令就大大降低了整体系统的执行效率。智能物流系统是集成化的智能制造系统的子系统,其主要职能就是依据智能数据采集平台收集到的现场执行进度和加工节奏,结合加工工艺和BOM信息,自主计算判定各个位置在未来各个时点的物料需求,进而向物流设备发布指令,驱动物流设备到适当的位置获取正确的物料,并运送到需要的工位或库位。智能物流是智能制造系统的循环系统,通过智能物流系统可以有效的提高物流效率,降低现场库存,减少运输错误,实现生产物流的智能化。1.2.5品质管理质量溯源及控制系统主要包括如下业务应用:品质记录品质记录的原始数据来源于智能数据采集平台,主要包括:PQC记录、IQC记录、巡检记录、驻厂检验记录、售后记录等,品质记录负责整理和清洗数据,形成供应商来料品质记录、产品品质记录书等,其中,产品品质记录书用于记录产品全生命周期的品质数据,是最重要的品质记录。产品品质追溯依托于产品品质记录书,提供产品品质追溯功能,产品品质追溯支持从两个视角展开:由产品查询相关的各类品质信息,在产品品质缺陷分析或工艺设计改进时,提供准确的用料信息、部装信息以及加工过程的质量数据,并可进一步延展到售后服务阶段,提供全生命周期的质量信息;从材料出发,反向查询受到影响的部件及成品,从而精确界定由特定批次的材料品质缺陷影响到的成品范围,以便召回或主动维护。生产防错生产过程中由于各类错误可能会引发重大的质量事故,智能数据采集平台可以采集到实时的加工信息,生产防错系统可以依据系统识别到的加工工艺、BOM及当前加工任务,在加工开始前与线上产品或投入的材料再次验证,核对无误后方可执行加工动作,最大限度的降低出现错误或不按规程操作的情况,实现预防性的质量控制。首件质检首件质检是批量加工前品质确认的活动,智能制造系统提供首件质检的应用,通过识别加工件信息及工艺要求,提取质检方案,由现场工人和QC人员逐条确认检验指标的检验值并判定检验结果。对于首件质检不合格的批次,会提交到生产防错系统中,控制该批次不可向下流转。现场巡检基于现场移动网络,提供手持设备(PDA)接入,通过手持设备上部署的现场巡检应用,采用文字、音频、视频等多种形式,实时记录现场物流、存储及加工过程中的质量问题,以便随时纠正及后期改进。同时,可以在质量事故发生的第一时间记录并反馈实际情况,以便及时采取应对措施,将影响范围控制到最小。质量SPC统计工序控制即SPC(StatisticalProcessControl)。它是利用统计方法对过程中的各个阶段进行控制,从而达到改进与保证质量的目的。SPC强调以全过程的预防为主,因此,需要结合智能数据采集平台提供的现场运行数据和累积历史数据,运用大数据分析技术,通过建模分析和趋势预测,有预见性的提出工艺工程改进建议,保证加工过程可靠,产品质量持续稳定。1.2.6设备管理在设备加工为主的工厂,尤其是设