分布式文件系统学习

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1分布式基础学习所谓分布式,在这里,很狭义的指代以Google的三驾马车,GFS、Map/Reduce、BigTable为框架核心的分布式存储和计算系统。通常如我一样初学的人,会以Google这几份经典的论文作为开端的。它们勾勒出了分布式存储和计算的一个基本蓝图,已可窥见其几分风韵,但终究还是由于缺少一些实现的代码和示例,色彩有些斑驳,缺少了点感性。幸好我们还有OpenSource,还有Hadoop。Hadoop是一个基于Java实现的,开源的,分布式存储和计算的项目。作为这个领域最富盛名的开源项目之一,它的使用者也是大牌如云,包括了Yahoo,Amazon,Facebook等等(好吧,还可能有校内,不过这真的没啥分量...)。Hadoop本身,实现的是分布式的文件系统HDFS,和分布式的计算(Map/Reduce)框架,此外,它还不是一个人在战斗,Hadoop包含一系列扩展项目,包括了分布式文件数据库HBase(对应Google的BigTable),分布式协同服务ZooKeeper(对应Google的Chubby),等等。。。如此,一个看上去不错的黄金搭档浮出水面,Google的论文+Hadoop的实现,顺着论文的框架看具体的实现,用实现来进一步理解论文的逻辑,看上去至少很美。网上有很多前辈们,做过Hadoop相关的源码剖析工作,我关注最多的是这里,目前博主已经完成了HDFS的剖析工作,Map/Reduce的剖析正火热进行中,更新频率之高,剖析之详尽,都是难得一见的,所以,走过路过一定不要错过了。此外,还有很多Hadoop的关注者和使用者贴过相关的文章,比如:这里,这里。也可以去Hadoop的中文站点(不知是民间还是官方...),搜罗一些学习资料。。。我个人从上述资料中受益匪浅,而我自己要做的整理,与原始的源码剖析有些不同,不是依照实现的模块,而是基于论文的脉络和实现这样系统的基本脉络来进行的,也算,从另一个角度给出一些东西吧。鉴于个人对于分布式系统的理解非常的浅薄,缺少足够的实践经验,深入的问题就不班门弄斧了,仅做梳理和解析,大牛至此,可绕路而行了。。。一.分布式文件系统分布式文件系统,在整个分布式系统体系中处于最低层最基础的地位,存储嘛,没了数据,再好的计算平台,再完善的数据库系统,都成了无水之舟了。那么,什么是分布式文件系统,顾名思义,就是分布式+文件系统。它包含这两个方面的内涵,从文件系统的客户使用的角度来看,它就是一个标准的文件系统,提供了一系列API,由此进行文件或目录的创建、移动、删除,以及对文件的读写等操作。从内部实现来看,分布式的系统则不再和普通文件系统一样负责管理本地磁盘,它的文件内容和目录结构都不是存储在本地磁盘上,而是通过网络传输到远端系统上。并且,同一个文件存储不只是在一台机器上,而是在一簇机器上分布式存储,协同提供服务,正所谓分布式。。。因此,考量一个分布式文件系统的实现,其实不妨可以从这两方面来分别剖析,而后合二为一。首先,看它如何去实现文件系统所需的基本增删改查的功能。然后,看它如何考虑分布式系统的特点,提供更好的容错性,负载平衡,等等之类的。这二者合二为一,就明白了一个分布式文件系统,整体的实现模式。。。I.术语对照说任何东西,都需要统一一下语言先,不然明明说的一个意思,却容易被理解到另一个地方去。Hadoop的分布式文件系统HDFS,基本是按照Google论文中的GFS的架构来实现的。但是,HDFS为了彰显其不走寻常路的本性,其中的大量术语,都与GFS截然不同。明明都是一个枝上长的土豆,它偏偏就要叫山药蛋,弄得水火不容的,苦了我们看客。秉承老好人,谁也不得罪的方针,文中,既不采用GFS的叫法,也不采用Hadoop的称谓,而是另辟蹊径,自立门户,搞一套自己的中文翻译,为了避免不必要的痛楚,特此先来一帖术语对照表,要不懂查一查,包治百病。。。文中所用翻译HDFS中的术语GFS中的术语术语解释主控服务器NameNodeMaster整个文件系统的大脑,它2提供整个文件系统的目录信息,并且管理各个数据服务器。数据服务器DataNodeChunkServer分布式文件系统中的每一个文件,都被切分成若干个数据块,每一个数据块都被存储在不同的服务器上,此服务器称之为数据服务器。数据块BlockChunk每个文件都会被切分成若干个块,每一块都有连续的一段文件内容,是存储的基恩单位,在这里统一称做数据块。数据包Packet无客户端写文件的时候,不是一个字节一个字节写入文件系统的,而是累计到一定数量后,往文件系统中写入一次,每发送一次的数据,都称为一个数据包。传输块Chunk无在每一个数据包中,都会将数据切成更小的块,每一个块配上一个奇偶校验码,这样的块,就是传输块。备份主控服务器SecondaryNameNode无备用的主控服务器,在身后默默的拉取着主控服务器的日志,等待主控服务器牺牲后被扶正。*注:本文采用的Hadoop是0.19.0版本。II.基本架构1.服务器介绍与单机的文件系统不同,分布式文件系统不是将这些数据放在一块磁盘上,由上层操作系统来管理。而是存放在一个服务器集群上,由集群中的服务器,各尽其责,通力合作,提供整个文件系统的服务。其中重要的服务器包括:主控服务器(Master/NameNode),数据服务器(ChunkServer/DataNode),和客户服务器。HDFS和GFS都是按照这个架构模式搭建的。个人觉得,其中设计的最核心内容是:文件的目录结构独立存储在一个主控服务器上,而具体文件数据,拆分成若干块,冗余的存放在不同的数据服务器上。存储目录结构的主控服务器,在GFS中称为Master,在HDFS中称为NameNode。这两个名字,叫得都有各自的理由,是瞎子摸象各表一面。Master是之于数据服务器来叫的,它做为数据服务器的领导同志存在,管理各个数据服务器,收集它们的信息,了解所有数据服务器的生存现状,然后给它们分配任务,指挥它们齐心协力为系3统服务;而NameNode是针对客户端来叫的,对于客户端而言,主控服务器上放着所有的文件目录信息,要找一个文件,必须问问它,由此而的此名。。。主控服务器在整个集群中,同时提供服务的只存在一个,如果它不幸牺牲的话,会有后备军立刻前赴后继的跟上,但,同一时刻,需要保持一山不容二虎的态势。这种设计策略,避免了多台服务器间即时同步数据的代价,而同时,它也使得主控服务器很可能成为整个架构的瓶颈所在。因此,尽量为主控服务器减负,不然它做太多的事情,就自然而然的晋升成了一个分布式文件系统的设计要求。。。每一个文件的具体数据,被切分成若干个数据块,冗余的存放在数据服务器。通常的配置,每一个数据块的大小为64M,在三个数据服务器上冗余存放(这个64M,不是随便得来的,而是经过反复实践得到的。因为如果太大,容易造成热点的堆叠,大量的操作集中在一台数据服务器上,而如果太小的话,附加的控制信息传输成本,又太高了。因此没有比较特定的业务需求,可以考虑维持此配置...)。数据服务器是典型的四肢发达头脑简单的苦力,其主要的工作模式就是定期向主控服务器汇报其状况,然后等待并处理命令,更快更安全的存放好数据。。。此外,整个分布式文件系统还有一个重要角色是客户端。它不和主控服务和数据服务一样,在一个独立的进程中提供服务,它只是以一个类库(包)的模式存在,为用户提供了文件读写、目录操作等APIs。当用户需要使用分布式文件系统进行文件读写的时候,把客户端相关包给配置上,就可以通过它来享受分布式文件系统提供的服务了。。。2.数据分布一个文件系统中,最重要的数据,其实就是整个文件系统的目录结构和具体每个文件的数据。具体的文件数据被切分成数据块,存放在数据服务器上。每一个文件数据块,在数据服务器上都表征为出双入队的一对文件(这是普通的Linux文件),一个是数据文件,一个是附加信息的元文件,在这里,不妨把这对文件简称为数据块文件。数据块文件存放在数据目录下,它有一个名为current的根目录,然后里面有若干个数据块文件和从dir0-dir63的最多64个的子目录,子目录内部结构等同于current目录,依次类推(更详细的描述,参见这里)。个人觉得,这样的架构,有利于控制同一目录下文件的数量,加快检索速度。。。这是磁盘上的物理结构,与之对应的,是内存中的数据结构,用以表征这样的磁盘结构,方便读写操作的进行。Block类用于表示数据块,而FSDataset类是数据服务器管理文件块的数据结构,其中,FSDataset.FSDir对应着数据块文件和目录,FSDataset.FSVolume对应着一个数据目录,FSDataset.FSVolumeSet是FSVolume的集合,每一个FSDataset有一个FSVolumeSet。多个数据目录,可以放在不同的磁盘上,这样有利于加快磁盘操作的速度。相关的类图,可以参看这里。。。此外,与FSVolume对应的,还有一个数据结构,就是DataStorage,它是Storage的子类,提供了升级、回滚等支持。但与FSVolume不一样,它不需要了解数据块文件的具体内容,它只知道有这么一堆文件放这里,会有不同版本的升级需求,它会处理怎么把它们升级回滚之类的业务(关于Storage,可以参见这里)。而FSVolume提供的接口,都基本上是和Block相关的。。。相比数据服务器,主控服务器的数据量不大,但逻辑更为复杂。主控服务器主要有三类数据:文件系统的目录结构数据,各个文件的分块信息,数据块的位置信息(就数据块放置在哪些数据服务器上...)。在GFS和HDFS的架构中,只有文件的目录结构和分块信息才会被持久化到本地磁盘上,而数据块的位置信息则是通过动态汇总过来的,仅仅存活在内存数据结构中,机器挂了,就灰飞烟灭了。每一个数据服务器启动后,都会向主控服务器发送注册消息,将其上数据块的状况都告知于主控服务器。俗话说,简单就是美,根据DRY原则,保存的冗余信息越少,出现不一致的可能性越低,付出一点点时间的代价,换取了一大把逻辑上的简单性,绝对应该是一个包赚不赔的买卖。。。在HDFS中,FSNamespacesystem类就负责保管文件系统的目录结构以及每个文件的分块状况的,其中,前者是由FSDirectory类来负责,后者是各个INodeFile本身维护。在INodeFile里面,有一个BlockInfo的数组,保存着与该文件相关的所有数据块信息,BlockInfo中包含了从数据块到数据服务器的映射,INodeFile只需要知道一个偏移量,就可以提供相关的数据块,和数据块存放的数据服务器信息。。。3、服务器间协议在Hadoop的实现中,部署了一套RPC机制,以此来实现各服务间的通信协议。在Hadoop中,每一对服务器间的通信协议,都定义成为一个接口。服务端的类实现该接口,并且建立RPC服务,监听相关的接口,在独立的线程4处理RPC请求。客户端则可以实例化一个该接口的代理对象,调用该接口的相应方法,执行一次同步的通信,传入相应参数,接收相应的返回值。基于此RPC的通信模式,是一个消息拉取的流程,RPC服务器等待RPC客户端的调用,而不会先发制人主动把相关信息推送到RPC客户端去。。。其实RPC的模式和原理,实在是没啥好说的,之所以说,是因为可以通过把握好这个,彻底理顺Hadoop各服务器间的通信模式。Hadoop会定义一些列的RPC接口,只需要看谁实现,谁调用,就可以知道谁和谁通信,都做些啥事情,图中服务器的基本架构、各服务所使用的协议、调用方向、以及协议中的基本内容。。。III.基本的文件操作5基本的文件操作,可以分成两类,一个是对文件目录结构的操作,比如文件和目录的创建、删除、移动、更名等等;另一个是对文件数据流的操作,包括读取和写入文件数据。当然,文件读和写,是有本质区别的,尤其是在数据冗余的情况下,因此,当成两类操作也不足为过。此外,要具体到读写的类别,也是可以再继续分类下去的。在GFS的论文中,对于分布式文件系统的读写场景有一个重要的假定(其实是

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功