1中国人口增长预测模型的建立与分析摘要为了加快中国的经济建设进程,全面落实科学的发展观,按照构建社会主义和谐社会的要求,实现人口与经济社会资源环境的协调和可持续发展。我们确定人口发展战略,必须既着眼于人口本身的问题,又处理好人口与经济社会资源环境之间的相互关系,构建社会主义和谐社会,统筹解决人口数量、素质、结构、分布等问题。本文是以《中国人口统计年鉴》公布的部分人口数据为基准(其他部分数据通过网站查询得到),通过合理的假设和数学模型得到了对于中国人口增长预测的统计模型。对中国人口做出分析和预测,主要分为如下三个方面:第一、对人口做短期预测分析;首先采用灰色系统对人口数量及人口分布即城镇化程度进行预测分析,然后利用人口发展方程进行改进,将二维(年龄、时间)关系转化为一维关系,求出01-05年的各个年龄段的人口增长率,由此反映出人口数量变化趋势。在此基础上求得01-05年总的人口增长率,再利用灰色系统对06-07年的人口增长率进行预测并对结果进行分析。其次对人口结构进行预测分析。人口结构包括老龄化程度、抚养比、男女出生比例、育龄期妇女所占总人口比重、生育率,我们分别采用多次逐步回归,灰色系统,拟合等预测方法对其建立预测模型进行预测分析。第二、对中国人口做出长期分析和预测;我们建立两个模型进行预测。模型一、基于人口发展方程原理的改进模型:y=0.6535*K*100/(M+100)-6.19%这个模型能反映人口数量与人口结构、人口分布之间的关系。从长远来看,城镇化程度会越来越严重,并且其在很大程度上影响男女出生性别比、老龄化程度、生育率等。因此利用人口发展方程的原理分别重新建立男女出生性别比、老龄化程度、生育率与时间、城镇化程度的关系模型,并对此进行长期预测。分析得结论:育龄期妇女的生育率都随时间而减小,最终趋于稳定值(大约为19‰);城镇化程度逐渐增大,最后趋于稳定状态(城市人口所占比重为28.40%,镇为31.61%,乡为39.99%);长期预测中的男女出生性别比逐渐减小,最终在113.5附近趋于平衡。又由于人口数量受出生率变化的影响,而男女出生性别比、生育率对出生率影响很大。因此建立人口数量与男女出生性别比、生育率的关系模型并进行长期预测。结论为:人口数量呈先增大后减小趋势,峰值出现在2042年,届时人口数量将达到最大,为16.2295亿。模型二、基于leslie的改进模型:(t)XBBB+(t)XAAA=t)▽n+X(t22)-(n32112)-(n321此模型考虑到了生育率的变化,并是针对总人口分布处理的,克服了leslie模型的不足,很适合做长期预测。我们先分别对城、镇、乡进行预测,再综合得出总的预测结果。得到结论:人口数量先增大后减小,峰值出现在2040年,届时人口数量将达到最大,为15.869亿,这与模型一得出的结果比较接近。并且由预测的年龄结构发现,老年化程度越来越严重,到2045年50-70岁这一年龄段分布的人口最多。第三、人口控制:用模型一做出的人口总量预测峰值为16.2295亿。这与我国提出的将人口总量峰值控制在15亿左右的战略目标有一定差距。而影响此模型预测结果的参数主要是育龄妇女的生育率,因此我们通过控制生育率来控制人口数量。关键词:分析和预测人口发展方程灰色系统leslie改进模型21问题的背景随着中国加入世界贸易组织,进入世界500强,我们迎来了更多的机遇,但同时也面临更加艰巨的挑战。中国要在世界中立于不败之地,林立于世界强林之中,首先必须注重人口的发展。现在人口素质已成为综合国力竞争的核心,在经济社会发展中占据着举足轻重的地位。中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。近年来我国人口发展出现了一些新的特点。例如,老龄化进程加速、出生人口性别比持续升高,乡村人口城镇化,先天畸形儿比例较高,人口在地区产业间分布不尽合理,人力资源分配不很完善等,这些因素都影响着中国人口的增长。为了加快中国的经济建设进程,全面落实科学的发展观。按照构建社会主义和谐社会的要求,坚持以人为本,推进体制改革,优先投资于人的全面发展:稳定低生育水平,提高人口素质,改善人口结构,引导人口合理分布。保障人口安全,实现人口大国向人力资本强国的转变,实现人口与的协调和可持续发展。我们确定人口发展战略,必须既着眼于人口本身的问题,又处理好人口与经济社会资源环境之间的相互关系,构建社会主义和谐社会,统筹解决人口数量、素质、结构、分布问题。因此建立一个人口增长预测的数学模型对中国人口增长的中短期和长期趋势做出预测就显得尤为重要了。2问题的重述中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。2007年初发布的《国家人口发展战略研究报告》(附录1)做出了进一步的分析。关于中国人口问题已有多方面的研究,并积累了大量数据资料。附录2是从《中国人口统计年鉴》上收集到的部分数据。从中国的实际情况和人口增长的上述特点,以构建社会主义和谐社会,统筹解决人口数量、素质、结构、分布等问题为出发点,参考附录2中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测,包括人口数量、结构、分布情况等,并且针对预测的结果提出控制的方法;特别要指出所建模型中的优点与不足之处。3基本假设(1)假设题中所给数据基本真实有效;(2)假设没有重大的自然灾害发生;(3)在较近一段时期,政府政策基本不发生重大变化;(4)在较近一段时期,医疗卫生条件保持不变;(5)所研究的问题没有太大的人口迁入与迁出;(6)男性比率之和和女性比例之和的总和在1附近。可以近似认为1。34模型的符号说明符号符号说明t时间r年龄),(trF人口分布函数,表示第t年、年龄小于r的人口数),(trpdr时刻t年龄在区间[drrr,]内的人数),(tr时刻t年龄r的人的死亡率drtrptr),(),(第t年在drrr,内单位时间死亡的人数W乡的老龄化人口占总人口的比率R第r年龄段的人口数量百分比)(tf婴儿出生率)(rk女性性别比函数)(rb女性在单位时间内平均每人的生育数量)(t时刻t单位时间内平均每个育龄女性的生育数ip第i年龄段人口数量的比值(加权值)id第i年龄段人口的死亡率。5模型分析建立及求解5.1中短期人口预测5.1.1模型预处理首先,我们做如下处理:第一,鉴于人口的增长率只有0岁婴儿的出生能够表示,我们将0岁婴儿分为一类。而育龄妇女的年龄分布为15—49岁,且20—29岁之间的生育率尤为高,之后在我国计划生育等政策制度的影响下,生育率有所控制,由此我们把这一期间的人口分为初始生育期、生育旺盛期、生育控制期三类。而老年人又有较高的死亡率,所以结合中国统计年鉴的分类标准,把65岁以上的人群定义为老年人。综上原因,我们把年龄段分为如下7部分:定义0岁为婴儿期,1-14岁为幼年期,15-19岁为初始生育期,20-29岁为生育旺盛期;30-49岁为生育控制期;50-65岁为转向老年期;65岁以上为老年期。第二,通过EXCEL计算,各年市、镇、乡各年龄组的男性比率与女性比率的总和在1附近。由于是统计数据,所以稍有偏差,以下我们可以近似认为男、女比率之和为1。第三,本题要求对人口做中短期与长期预测。进行中短期预测时,由于政府政策在短时期内基本不变,人口数量、素质、结构、分布之间的关系不很明显,所以可以忽略它们之间的相互影响,采取以下方法进行预测。其次,对于中短期人口的预测,我们从人口分布、数量、结构三方面考虑。第一,人口数量我们采用人口发展方程模型,把针对人口数量的时间与年龄两个变量综合成一个变量,从而将二维微分方程转化为一维微分方程,大大改进并简化了模型。并且用人口增长率变化来反映人口数量的变化。第二,人口分布的预测,我们进行人口城镇化比例的预测,采用灰色系统的方法。第三,针对人口结构,我们又进一步从以下几个方面进行了预测:一,老龄化比例预测,我们采用灰色系统理论进行了预测。二,出生人口性别比预测,我们采用二次逐4步拟合的方法进行预测。三,劳动力预测,即人口抚养比预测,我们采用灰色系统进行预测。四,育龄妇女所占比重的预测,我们同样采用灰色系统。第五,生育率预测,我们又采用二次逐步拟合。5.1.2人口数量与人口分布预测5.1.2.1人口数量预测的微分方程题目所给数据量较少,运用时间序列进行预测需要大量的数据,不合适;而且预计未来某一时刻会有一个人口高峰值,因此运用灰色系统也不合理。因此我们转向考虑建立微分方程,借鉴人口发展方成模型,把以人口数量为因变量的两个自变量——时间与年龄综合成一个变量,从而将二维微分方程转化为一维微分方程,大大改进并简化了模型。并利用此求出各年的人口增长率,用人口增长率的变化来反映人口数量的变化。我们引用人口发展方程,设),(trF是在第t年、年龄小于r的人口数,即人口分布函数。将人口密度函数定义为:rFtrp),(,),(trpdr表示时刻t年龄在区间[drrr,]内的人数。记),(tr为时刻t年龄r的人的死亡率,其含义是:drtrptr),(),(表示第t年在drrr,内单位时间死亡的人数。为了得到),(trp满足的方程,考察第t年、年龄在drrr,内的人到时刻dtt的情况。他们中活着的那一部分人的年龄变为11,drdrrdrr,这里dtdr1。而在dt这段时间内死亡的人数为drdttrptr),(),(。于是drdttrptrdrdttdrrpdrtrp),(),(),(),(1设R为第r年龄段的人口数量百分比,即),(/)1,(trptrpR。对模型进行简化,将二维变量化为一维变量,即),(/)),1(1(*),1(),(/)1,(trptrutrptrptrpR。在第t年中,第r年龄段的人口数量百分比为)(/))1(1(*)1(rprurpR,从而将变量t省去。以第t年为例,方程有一个定解条件:出生的婴儿数量占总人口百分比记作)(),0(tftp,称婴儿出生率。设女性性别比函数为)(rk,年龄在drrr,的女性人数为drrprk)()(,将这些女性在单位时间内平均每人的生育数量记作)(rb,设育龄区为],[21rr,则)(t的直接含义是时刻t单位时间内平均每个育龄女性的生育数。由此得到以下微分方程组:21),(),(),()()()(/))1(1(*)1(rrdrtrptrktrhttfrprurpr这个连续型人口发展方程描述了人口的演变过程,但为进一步简化模型,设dr=1;即一岁为一个年龄段;将连续方程离散化。从这个方程确定出密度函数),(trp以后,立即可以得到各个年龄的人口比值(见附件1),即人口比值分布函数。运用连续方程离散化的思想,利用等式:净人口增长率=出生率-死亡率,出生率即为)(tf,死亡率为iniidp*1,其中ip为第i年龄段人口数量的比值(加权值),id为相应年龄段的死亡率。5.1.2.2三种类型人口净增长率的求解结合上述微分方程组,根据人口净增长率=出生率-死亡率,且出生率=各年市、镇、乡的女性比率与育龄妇女生育率的乘积之和,死亡率=各年男性比率男性死亡率+女性5比率女性死亡率,求出2001—2005年城市、镇、乡三种类型的人口净增长率。表12001-2005年市、镇、乡三种类型人口净增长率(单位:%)年份类型20012002200320042005城市4.68623.45022.91744.27793.5108镇6.34515.17425.79165.33744.0971乡5.66114.90724.93844.47012.9958我们考虑分别采用灰色系统,多元逐步回归,时间序列分析等三种方法对三种类型的人口进行净总人口增长率的预测。但是,通过比较分析得知在这三种方法中,灰色