1习题5.11.如何表述定积分的几何意义?根据定积分的几何意义推出下列积分的值:(1)xxd11,(2)xxRRRd22,(3)xxdcos02,(4)xxd11.解:若xxfxfbaxabd)(,0)(,,则时在几何上表示由曲线)(xfy,直线bxax,及x轴所围成平面图形的面积.若bax,时,xxfxfabd)(,0)(则在几何上表示由曲线)(xfy,直线bxax,及x轴所围平面图形面积的负值.(1)由下图(1)所示,0)(d1111AAxx.(2)由上图(2)所示,2πd2222RAxxRRR.(3)由上图(3)所示,0)()(dcos5353543π20AAAAAAAxx.(4)由上图(4)所示,1112122d611Axx.2.设物体以速度12tv作直线运动,用定积分表示时间t从0到5该物体移动RRORxy2A(2)-1-1111A1AOxy(1)Oxy1-13A4A5A2ππ(3)1111Oxy6A6A(4)2的路程S.解:sttd)12(053.用定积分的定义计算定积分baxcd,其中c为一定常数.解:任取分点bxxxxan210,把],[ba分成n个小区间],[1iixx)2,1(ni,小区间长度记为xi=ix-1ix)2,1(ni,在每个小区间iixx,1上任取一点i作乘积iixf)(的和式:niniiiiiabcxxcxf111)()()(,记}{max1inix,则)()(lim)(limd00abcabcxfxcniiiba.4.利用定积分定义计算120dxx.解:上在]1,0[)(2xxf连续函数,故可积,因此为方便计算,我们可以对0,1n等分,分点iininix;1,,2,1,取相应小区间的右端点,故niiiniiiniiixxxxf12121)(=niniinnni1232111)(=311(1)(21)6nnnn=)12)(11(61nn当时0(即时n),由定积分的定义得:120dxx=31.5.利用定积分的估值公式,估计定积分1134)524(xxxd的值.解:先求524)(34xxxf在1,1上的最值,由0616)(23xxxf,得0x或83x.比较7)1(,102427)83(,5)0(,11)1(ffff的大小,知11,102427maxminff,由定积分的估值公式,得)1(1d)524()]1(1[max1134minfxxxf,3即22d)524(512271134xxx.6.利用定积分的性质说明10dxex与10d2xex,哪个积分值较大?解:在0,1区间内:22xxxxee由比较定理:10dxex10d2xex7.证明:2121212d22xeex。证明:考虑21,21上的函数2xey,则22xxey,令0y得0x当0,21x时,0y当21,0x时,0y∴2xey在0x处取最大值1y,且2xey在21x处取最小值21e.故21212121212121d1dd2xxexex,即2121212d22xeex。8.求函数21)(xxf在闭区间[-1,1]上的平均值.解:平均值11224π21π21d1)1(11xx9.设)(xf在[0,1]上连续且单调递减,试证对任何)1,0(a有axxfaxxf010d)(d)(.证明:axxfaxxf010d)(d)(=aaxxfaxxf00d)(d)(1d)(axxfa10d)(d)()1(aaxxfaxxfa=)()1()()1(afaafa)]()([)1(ffaa其中1,0aa4又)(xf单调减,则)()(ff,故原式得证.习题5-21.计算下列定积分(1)40d2xx;(2)122d||xxx;(3)π20d|sin|xx;(4)xxxd}1,max{10.解:(1)xxxxxxd)2(d)2(d24220404)221()212(422202xxxx(2)122d||xxx=023d)(xx+103dxx=10402444xx=4+41741.(3)π20d|sin|xx=π0dsinxx+π2πd)sin(xx=π2ππ0cos)cos(xx=2+2=4.(4)xxxd}1,max{10=54dd)1(121210xxxx.2.计算下列各题:(1)10100dxx,(2)41dxx,(3)10dexx,(4)xxd10010,(5)xxdsin2π0,(6)xxxde210,(7)xxd)π2sin(2π0,(8)xxxd2lne1,(9)102100dxx,(10)4π02dcostanxxx,解:(1)10100dxx=101110110101x.(2)41dxx=314324123x.(3)1eede1010xxx.(4)xxd10010=100ln99100ln10010x.(5)1cosdsin2π02π0xxx.5(6)21e2e)(de21de1021010222xxxxxx.(7)xxd)π2sin(2π0=)π2(d)π2sin(212π0xx=2π0)π2cos(21x=1.(8)xxxd2lne1=)d(lnln21e1xx=41ln41e12x.(9)102100dxx=102)10(1d1001xx=1010arctan101x=101arctan101.(10)4π02dcostanxxx=4π0)tand(tanxx=4π022)(tanx=21.3.求下列极限(1)xttxxπcos1dπsinlim11;(2)202arctandlim1xxttx.解:(1)此极限是“00”型未定型,由洛必达法则,得xttxxπcos1dπsinlim11=)πcos1()dπsin(lim11xttxx=π1)π1(limπsinππsinlim11xxxx(2)2201222arctandarctanlimlim11122xxxttxxxx型221arctanlimxxxx2211arctanlimxxxxx2221lim1arctan4xxx4.设xtty0d)1(,求y的极小值解:当'10yx,得驻点1x,''10.1yx为极小值点,极小值1021-dx)1()1(xy5.设1,211,12xxxxxf,求20dxxf。6解:2121020d21d1dxxxxxxf386121213102xxx6.设其它,00,sin21xxxf,求xttfx0d。解:当0x时,0d0d00xxtttfx当x0时,2cos1dsin210xttxx当x时,1d0dsin21ddd000xxxtttttfttfttfx故时当时当时当xxxx,10,cos1210,07.设xf是连续函数,且10d2ttfxxf,求xf。解:令Attf10d,则Axxf2,从而AxAxxxf221d2d1010即AA221,21A∴1xxf8.2221limnnnnn。解:原式nnnnnn121lim32d1lim101xxnninin9.求nknknknnene12lim。解:原式nknknknnee1211lim4d110102arctgearctgexeexxx10.求由0dcosd00xytttte所决定的隐函数y对x的导数xydd。解:将两边对x求导得7yexydd0cosx∴xyddyexcos习题5-31.下面的计算是否正确,请对所给积分写出正确结果:(1)xxxdcoscos2π2π3=xxxdsin)(cos2π2π21=)cosd()(cos2π2π21xx=0cos322π2π23x.(2)111122)sind()(sin1d1ttxx=11dcoscosttt=112d)(costt=2102d)(costt=22sin211)2sin21(d22cos11010tttt.答:(1)不正确,应该为:xxxxxxdsin)(cos2dcoscos212π2π2π03=343cos4)cos)(cos220232021ππd(xxx(2)不正确,应该为:112π2π2π2π222d)(cos)sind()(sin1d1ttttxx=22π02π02π02)2sin21(d22cos12d)(costttttt2π.2.计算下列定积分:(1)xxd16402,(2)102d41xx.(3)203cossinxdxx;(4)xxxdlne12;(5)xexd12ln0;(6)1145dxxx;(7)411dxx;(8)xxdsin203;(9)21ln1dexxx;8(10)02222dxxx;(11)xxd2cos10;(12)1022d1xxx。解:(1)令x=tsin4,则ttxtxdcos4d,cos4162,当x=0时,t=0;当x=4时,2πt,于是xxd16402=π4)2sin48(d)2cos1(8dcos4cos42π02π020ttttttt(2)102d41xx=102)2d()2(1121xx=21arctan212arctan2110x.(3)203cossinxdxx41cos41dcoscos204203xxx(4))d(lnlndlne12e12xxxxx31])1(ln)e[(ln31)(ln3133e13x(5)令tex1,1ln2tx,tttxd12d2,0x时0t;2lnx时,1t.于是tttttxexd1112d12d110210222ln0412arctan210xtt(6)令ux45,则4452ux,uuxdd2.当1x时,3u,当1x时,1u.原式61d581132uu.(7)令tx,ttxd2d.当1x时,1t;当4x时,2t.原式2121211dd21d2tttttt32ln221ln22121tt(8)因为xxdsin203=xxxxxxxxdsincosdsindsin]cos1[202202021cosdsin2020