云计算和大数据的关系

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

云计算和大数据的关系-----天互数据首先、什么是云计算?云计算(英语,是一种基于互联网的计算方式,通过这种方式,共享的软硬件资源和信息可以按需求提供给计算机和其他设备,主要是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。狭义云计算指基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需资源;广义云计算指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需服务。这种服务可以是IT和软件、互联网相关,也可是其他服务。它意[1]味着计算能力也可作为一种商品通过互联网进行流通。云计算的特征(1)资源配置动态化。根据消费者的需求动态划分或释放不同的物理和虚拟资源,当增加一个需求时,可通过增加可用的资源进行匹配,实现资源的快速弹性提供;如果用户不再使用这部分资源时,可释放这些资源。云计算为客户提供的这种能力是无限的,实现了IT资源利用的可扩展性。(2)需求服务自助化。云计算为客户提供自助化的资源服务,用户无需同提供商交互就可自动得到自助的计算资源能力。同时云系统为客户提供一定的应用服务目录,客户可采用自助方式选择满足自身需求的服务项目和内容。(3)以网络为中心。云计算的组件和整体构架由网络连接在一起并存在于网络中,同时通过网络向用户提供服务。而客户可借助不同的终端设备,通过标准的应用实现对网络的访问,从而使得云计算的服务无处不在。(4)资源的池化和透明化。对云服务的提供者而言,各种底层资源(计算、储存、网络、资源逻辑等)的异构性(如果存在某种异构性)被屏蔽,边界被打破,所有的资源可以被统一管理和调度,成为所谓的“资源池”,从而为用户提供按需服务;对用户而言,这些资源是透明的,无限大的,用户无须了解内部结构,只关心自己的需求是否得到满足即可。云计算和大数据的关系本质上,云计算与大数据的关系是静与动的关系;云计算强调的是计算,这是动的概念;而数据则是计算的对象,是静的概念。如果结合实际的应用,前者强调的是计算能力,或者看重的存储能力;但是这样说,并不意味着两个概念就如此泾渭分明。大数据需要处理大数据的能力(数据获取、清洁、转换、统计等能力),其实就是强大的计算能力;另一方面,云计算的动也是相对而言,比如基础设施即服务中的存储设备提供的主要是数据存储能力,所以可谓是动中有静。如果数据是财富,那么大数据就是宝藏,而云计算就是挖掘和利用宝藏的利器!大数据技术和云计算的关系大数据时代的超大数据体量和占相当比例的半结构化和非结构化数据的存在,已经超越了传统数据库的管理能力,大数据技术将是IT领域新一代的技术与架构,它将帮助人们存储管理好大数据并从大体量、高复杂的数据中提取价值,相关的技术、产品将不断涌现,将有可能IT行业开拓一个新的黄金时代。大数据本质也是数据,其关键的技术依然逃不脱:1)大数据存储和管理;2)大数据检索使用(包括数据挖掘和智能分析)。围绕大数据,一批新兴的数据挖掘、数据存储、数据处理与分析技术将不断涌现,让我们处理海量数据更加容易、更加便宜和迅速,成为企业业务经营的好助手,甚至可以改变许多行业的经营方式。大数据的商业模式与架构----云计算及其分布式结构是重要途径大数据处理技术正在改变目前计算机的运行模式,正在改变着这个世界:它能处理几乎各种类型的海量数据,无论是微博、文章、电子邮件、文档、音频、视频,还是其它形态的数据;它工作的速度非常快速:实际上几乎实时;它具有普及性:因为它所用的都是最普通低成本的硬件,而云计算它将计算任务分布在大量计算机构成的资源池上,使用户能够按需获取计算力、存储空间和信息服务。云计算及其技术给了人们廉价获取巨量计算和存储的能力,云计算分布式架构能够很好地支持大数据存储和处理需求。这样的低成本硬件+低成本软件+低成本运维,更加经济和实用,使得大数据处理和利用成为可能。大数据的存储和管理----云数据库的必然很多人把NoSQL叫做云数据库,因为其处理数据的模式完全是分布于各种低成本服务器和存储磁盘,因此它可以帮助网页和各种交互性应用快速处理过程中的海量数据。它采用分布式技术结合了一系列技术,可以对海量数据进行实时分析,满足了大数据环境下一部分业务需求。但我说这是错误的,至少是片面的,是无法彻底解决大数据存储管理需求的。云计算对关系型数据库的发展将产生巨大的影响,而绝大多数大型业务系统(如银行、证券交易等)、电子商务系统所使用的数据库还是基于关系型的数据库,随着云计算的大量应用,势必对这些系统的构建产生影响,进而影响整个业务系统及电子商务技术的发展和系统的运行模式。基于关系型数据库服务的云数据库产品将是云数据库的主要发展方向,云数据库(CloudDB),提供了海量数据的并行处理能力和良好的可伸缩性等特性,提供同时支持在在线分析处理(OLAP)和在线事务处理(OLTP)能力,提供了超强性能的数据库云服务,并成为集群环境和云计算环境的理想平台。它是一个高度可扩展、安全和可容错的软件,客户能通过整合降低IT成本,管理位于多个数据,提高所有应用程序的性能和实时性做出更好的业务决策服务。云据库要能够满足:A.海量数据处理:对类似搜索引擎和电信运营商级的经营分析系统这样大型的应用而言,需要能够处理PB级的数据,同时应对百万级的流量。B.大规模集群管理:分布式应用可以更加简单地部署、应用和管理。C.低延迟读写速度:快速的响应速度能够极大地提高用户的满意度。D.建设及运营成本:云计算应用的基本要求是希望在硬件成本、软件成本以及人力成本方面都有大幅度的降低。所以云数据库必须采用一些支撑云环境的相关技术,比如数据节点动态伸缩与热插拔、对所有数据提供多个副本的故障检测与转移机制和容错机制、SN(ShareNothing)体系结构、中心管理、节点对等处理实现连通任一工作节点就是连入了整个云系统、与任务追踪、数据压缩技术以节省磁盘空间同时减少磁盘IO时间等。云数据库路线是基于传统数据库不断升级并向云数据库应用靠拢,更好的适应云计算模式,如自动化资源配置管理、虚拟化支持以及高可扩展性等,才能在未来将会发挥不可估量的作用。云计算能为大数据带来的变化首先云计算为大数据提供了可以弹性扩展相对便宜的存储空间和计算资源,使得中小企业也可以像亚马逊一样通过云计算来完成大数据分析。其次,云计算IT资源庞大,分布较为广泛,是异构系统较多的企业及时准确处理数据的有力方式,甚至是唯一方式。当然大数据要走向云计算还有赖于数据通信带宽的提高和云资源的建设,需要确保原始数据能迁移到云环境以及资源池可以随需弹性扩展。数据分析集逐步扩大,企业级数据仓库将成为主流,未来还将逐步纳入行业数据,政府公开数据等多来源数据。当人们从大数据分析中尝到甜头后,数据分析集就会逐步扩大。目前大部分的企业所分析的数据量一般以TB为单位,按照目前数据的发展速度,很快将会进入PB时代。特别是目前在100——500TB和500+TB范围的分析数据集的数量呈3倍或4倍的增长。随着数据分析集的扩大,以前部门层级的数据集市将不能满足大数据分析的需求,他们将成为企业及数据库(EDW)的一个子集。根据TDWI的调查,如今大概有2/3的用户已经在使用企业级数据仓库,未来这一比例将会更高。传统分析数据库可以正常持续,但是会有一些变化,一方面,数据集市和操作性数据存储(ODS)的数量会减少,另一方面,传统的数据库厂商会提升他们产品的数据容量,细目数据和数据类型,以满足大数据分析的需要。大数据和云计算未来的发展方向和趋势虽然大数据目前在国内还处于初级阶段,但是商业价值已经显现出来。未来,数据可能成为最大的交易商品。但数据量大并不能算是大数据,大数据的特征是数据量大、数据种类多、非标准化数据的价值最大化。因此,大数据的价值是通过数据共享、交叉复用后获取最大的数据价值。在他看来,未来大数据将会如基础设施一样,有数据提供方、管理者、监管者,数据的交叉复用将大数据变成一大产业。大数据的整体态势和发展趋势,主要体现在几个方面:大数据与学术、大数据与人类的活动,大数据的安全隐私、关键应用、系统处理和整个产业的影响。大数据整体态势上,数据的规模将变得更大,数据资源化、数据的价值凸显、数据私有化出现和联盟共享。大数据的发展会催生许多新兴新职业,会产生数据分析师、数据科学家、数据工程师,有非常丰富的数据经验的人才会成为稀缺人才。随着大数据的发展,数据共享联盟将逐渐壮大成为产业的核心一环。随着大数据的共享越来越大,隐私问题也随之而来,比如说每天手机产生的通话、位置等等。但这给带来了便利的同时也给带来了个人隐私的问题。数据资源化,大数据在国家和企业和社会层面成为重要的战略资源,成为新的战略制高点和抢购的新焦点。总结:大数据与云计算虽然目前并不是十分完美,但却是未来IT发展趋势。大数据让数据真正成为集合,云计算则为大数据开启价值,值得期待。

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功