-1-温度作为工业生产和科学实验中最普遍、也是最重要的热工参数之一。其精度对产品或实验结果会产生重大的影响。而可编程控制器(PLC)可靠性高,抗干扰能力强,易学易用,采用PLC控制是其中一种比较优越的控制。本设计主题为“通过三菱PLC实现温度PID控制”。主要内容为通过FX2N-16MR和其扩展单元FX2N-4AD通过PID特殊功能指令实现单回路闭环系统控制。系统实现恒温箱内温度快速调整为设定值(110)保持恒定,当温度与设定值相差超过5时系统实现自动报警。系统可以自动根据所测量恒温箱内的当前实际温度与设定温度差异通过调节恒温箱内电热丝通断时间调节温度,使恒温箱内温度快速准确调整为设定值。关键词温度控制;PLC;PID调节;A/D模块-2-AbstractTemperatureasindustrialproductionandscientificexperiments,themostcommon,andmostimportantthermodynamicparameters.Theaccuracyoftheproductoritsresultswillhaveasignificantimpact.Theprogrammablelogiccontroller(PLC),highreliability,stronganti-interference,easytouse,PLCcontrolisoneoftherelativelysuperiorcontrol.ThedesignthemeisrealizedthroughMitsubishiPLCPIDtemperaturecontrol.ThemaincontentsarethroughFX2N-16MRanditsexpansionunitsFX2N-4ADspecialfunctioncommandsthroughthePIDclosed-loopsystemtoachievesingle-loopcontrol.Systemtoachieverapidadjustmentofthermostaticchambertemperaturesetvalue(110℃)remainsconstantwhenthetemperatureandthesetvaluedifferbymorethan5℃,automaticalarmsystem.Thesystemcanautomaticallybasedonthemeasuredtemperatureinsidethecurrentdifferencebetweentheactualtemperatureandthesettemperaturebyregulatingthetemperatureinsidetheheatingwireofftime,thetemperatureinsidethetemperaturequicklyandaccuratelyadjustthesettings.KeywordsTemperaturecontrol;PLC;PIDregulator;A/Dmodule-3-目录一、绪论··········································································································11.1PID控制技术概述...................................................................................11.2温度控制技术...........................................................................................11.3系统过程分析...........................................................................................2二、硬件设计··································································································32.1硬件选型...................................................................................................32.1.1可编程控制器选型.........................................................................42.1.2温度转换器选型··········································································52.1.3热电偶接触器选型······································································62.1.4继电器选型··················································································82.2硬件接线图...............................................................................................92.2.1输入接口电路···········································································102.2.2输出接口电路···········································································11三、软件设计·································································································153.1指令分析部分......................................................................................153.1.1PID调节部分·········································································153.1.2PID模块参数整定·································································183.1.3脉宽指令调节部分·································································193.1.4系统报警部分·········································································213.1.5模拟量数字量转换部分··························································223.2指令编写部分......................................................................................223.3附录......................................................................................................26四、设计总结·································································································27五、参考文献....................................................................................................28-4-一、绪论1.1PID控制技术发展概述自从上世纪三十年代以来,自动化技术获得惊人成果,在现在的工业生产和科学发展中起着重要作用。当前,自动化装置已成为大型设备不可分割的一部分。如果不配备适当的自动化设备,大型生产过程根本无法进行。因此,自动化水平高低已经成为衡量工业企业现代化发展程度的一个重要标志。在生产过程中,PID控制技术已经成为最普遍也最实用的控制技术之一。此后,随着计算机和PLC的发展,计算机和PLC与模糊ID控制技术相结合,可以通过计算机控制PLC产生PID参数,控制单闭环控制系统的被控对象以及反馈数据给计算机进行处理。并通过比例增益、积分增益和微分增益实现控制技术的快速性、准确性。1.2温度控制技术概述近几年,温度检测技术在理论发展上已经比较成熟,但在实际测量和控制中,怎样才能快速实时地对温度进行采集,确保数据的正常传输,并能对所测温度进行较快速、精确的控制,仍然是目前迫切需要解决的问题。目前国内温度控制系统仪表的发展,相对国外而言在性能上还存在一定差距,它们之间最大的差别主要在控制算法方面,具体表现为国内温度控制仪在量程范围内温度控制精度比较低,自适应性较差。这种不足的原因由多方面造成的,如不同的被控对象,或由于控制算法的不足导致控制精度不稳定。温度作为表征物体的冷热程度最基本的物理量,在很多生产过-5-程中,尤其是在冶金、建材、机械、食品等工业中,温度的测量和控制技术都直接和安全生产、生产效率、产品质量、节约能源等重大技术经济指标相联系。因此,温度的测量与控制技术在国民经济各个领域中均受到了相当程度的重视。对于不同工艺、不同场所所需温度高低范围不同、精度不同,则采用的测温元件、测温方法以及对温度的控制方法也将不同;产品工艺、控制温度的精度、时效不同,则对数据采集的精度和采用的控制算法也不同。因而,对温度的测控方法也变得多种多样。1.3本设计目标在该温度控制系统中,热电偶传感器检测到的温度经模拟量与数字量转换器转换成数字量,PLC将它与温度设定值比较,并按PID控制调节规律对误差值进行运算,将运算结果送给输出模块,控制开关量并根据当前温度值与设定值的差异,决定主电路控制开关闭和时间,即电热丝工作时间实现对温度的闭环控制。图1-1系统硬件结构框图二、硬件设计-6-可编程控制器(PLC)作为一种工业控制计算机,是继承计算机、自动控制技术和通信技术为一体的新型自动装置。它具有抗干扰能力强,价格便宜,可靠性强,编程简单,易学易用等特点,在工业领域中深受工程操作人员的喜欢,因此PLC已在工业控制的各个领域中被广泛地使用。2.1硬件选型对于一个系统设计来说,硬件选型尤为重要。首先应该确定系统是单机控制还是由多个PLC组成网络实现相对复杂控制。这样做有两个目的,其一、大致算出PLCDI/DO点数,进一步可以确定DI/DO模块型号和数量;其二、可以根据要求选择合适的网络模块。其次,确定系统是否有压力检测、温度检测,以及检测速度要求等方面要求,确定所需AD/DA/PT/TC等模块的型号和数量。最后,根据PLC输出端所带的负载是直流还是交流、是大电流还是小电流,以及PLC输出点动作的频率等,确定采用继电器输出,或是晶体管输出。不同的负载选用不同的输出方式,这些对系统的稳定运行是很重要的。对系统主要硬件进行选型,系统主要控制模块可选用FX2N-16