几何找规律(24、25题)1.如图,正方形ABCD的边长为5,把它的对角线AC分成n段,以每一小段为对角线作小正方形,这n个小正方形的周长之和为多少?2.如图,在四个正方形拼接成的图形中,以1A、2A、3A、…、10A这十个点中任意三点为顶点,共能组成________个等腰直角三角形.3.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为_________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.4.如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1)…则点A2016的坐标为_______________.5.如图所示,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变成△OA3B3.已知:A(1,2),A1(2,2),A2(4,2),A3(8,2),B(2,0),B1(4,0),B2(8,0),B3(16,0).按此规律将△OAB进行n次变换,得到三角形△OAnBn,推测An的坐标是_____________,Bn的坐标是_____________.6.如图,已知等腰Rt△ABC的直角边长为1,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE……依此类推直到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为.7.如图,以边长为1的正方形ABCD的边AB为对角线作第二个正方形AEBO1,再以BE为对角线作第三个正方形EFBO2,如此作下去,…,则所作的第n个正方形的面积Sn=.8.如图,在平面直角坐标系xOy中,已知点0M的坐标为()10,,将线段0OM绕原点O逆时针方向旋转45,再将其延长至点1M,使得100MMOM^,得到线段1OM;又将线段1OM绕原点O逆时针方向旋转45,再将其延长至点2M,使得211MMOM^,得到线段2OM;如此下去,得到线段3OM、4OM、5OM、…。根据以上规律,写出线段2014OM的长度为.9.在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….则四边形A2B2C2D2的周长是;四边形A2013B2013C2013D2013的周长是.10.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2B2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,An,则点An的坐标为____________.11.如图,菱形AB1C1D1的边长为1,∠B1=60°;作AD2⊥B1C1于点D2,以AD2为一边,作第二个菱形AB2C2D2,使∠B2=60°;作AD3⊥B2C2于点D3,以AD3为一边,作第三个菱形AB3C3D3,使∠B3=60°;……依此类推,这样作的第n个菱形ABnCnDn的边ADn的长是______.12.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.13.如图,△ABC是边长为1的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的面积记作S2.照此规律作下去,则S2016=.14.如图,已知直线l:3yx=,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M6的坐标为________15.如图,已知直线l:y=33x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下数)的面积记作nS,那么nS=.16.如图,直线1lx^轴于点(1,0),直线2lx^轴于点(2,0),直线3lx^轴于点(3,0),…,直线nlx^轴于点(,0)n.函数12yx=的图象与直线1l,2l,3l,…,nl分别交于点1A,2A,3A,…,nA;函数2yx的图象与直线1l,2l,3l,…,nl分别交于点1B,2B,3B,…,nB.如果11OABD的面积记作1S,四边形1221AABB的面积记作2S,四边形2332AABB的面积记作3S,…,四边形11nnnnAABB面积记为Sn=17.△ABC是一张等腰直角三角形纸板,90C??,2ACBC==,图1中剪法称为第1次剪取,记所得正方形面积为1S;按照这种剪法,在余下的ADED和BDFD中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并B2yB1C2C3A2A3A1OC1D1D2x记这两个正方形面积和为2S(如图2),继续操作下去,则第n次剪取时,nS=18.如图,在Rt△ABC中,∠C=90°,BC=1,AC=2,把边长分别为x1,x2,x3,…,xn的n个正方形依次放入△ABC中,则第n个正方形的边长xn=.18.长为2,宽为a的矩形纸片(1<a<2),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为-__________.19.如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1=,=.20.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=8,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直作下去,得到了一组线段CA1,A1C1,C1A2,A2C2,…,AnCn,则A1C1=,AnCn=.21.如图,矩形ABCD,过对角线的交点O作OE⊥BC于E,连接DE交OC于O1,过O1作O1E1⊥BC于E1,连接DE1交OC于O2,过O2作O2E2⊥BC于E2,…,如此继续,可以依次得到点O3,O4,…,On,分别记△DOE,△DO1E1,△DO2E2,…,△DOnEn的面积为S1,S2,S3,…Sn﹣1.则Sn=S矩形ABCD.22.已知△ABC中,AB=AC=m,∠ABC=72°,BB1平分∠ABC交AC于B1,过B1作B1B2∥BC交AB于B2,作B2B3平分∠AB2B1,交AC于B3,过B3作B3B4∥BC,交AB于B4…依次进行下去,则B9B10线段的长度用含有m的代数式可以表示为.23.如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、En,记△BCE1、△BCE2、分别△BCE3…△BCEn的面S1、S2、S3、…Sn.则积为Sn=S△ABC(用含n的代数式表示).24.如图,已知△ABC的面积1ABCSD=.在图一中,A1、B1、C1为三边的中点,于是有△A1B1C1的面积为41;在图2中,A2、B2、C2为三边的三等分点,则有△A2B2C2的面积为31;在图3中,A3、B3、C3为三边的四等分点,则有△A3B3C3的面积为167,按此规律,当A8、B8、C8为九等分点时,△A8B8C8面积为.25.如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…Mn分别为边B1B2,B2B3,B3B4,…,BnBn+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△BnCnMn的面积为Sn,则Sn=.(用含n的式子表示)26.探索:在如图①至图③中,三角形ABC的面积为a,(1)如图①,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S,则S1=______(用含a的代数式表示);(2)如图②,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE,若△DEC的面积为S,则S2=(用含a的代数式表示)并写出理由;(3)在图②的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图③),若阴影部分的面积为S3,则S3=______(用含a的代数式表示)发现:象上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图③),此时,我们称△ABC向外扩展了一次,可以发现,扩展后得到的△DEF的面积是原来△ABC面积的____倍。应用:去年在面积为10m2的△ABC空地上栽种了某种花,今年准备扩大种植规模,把△ABC向外进行两次扩展,第一次由△ABC扩展成△DEF,第二次由△DEF扩展成△MGH(如图④)。求这两次扩展的区域(即阴影部分)面积共为多少m2?27.(2011•南昌)某数学兴趣小组开展了一次活动,过程如下:设∠BAC=θ(0°<θ<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC上.活动一:如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A1A2为第1根小棒.数学思考:设AA1=A1A2=A2A3=1.①θ=度;②若记小棒A2n﹣1A2n的长度为an(n为正整数,如A1A2=a1,A3A4=a2,…)求出此时a2,a3的值,并直接写出an(用含n的式子表示).②①ECCADDABB③FECADB④GMHFECDAB第一次操作第二次操作活动二:如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1.数学思考:(1)若已经摆放了3根小棒,θ1=,θ2=,θ3=;(用含θ的式子表示);(2)若只能摆放4根小棒,求θ的范围.