xtifpv2.3.1-变量之间的相关关系(必修3优秀课件)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第一课时2.3变量间的相关关系2.3.1变量之间的相关关系2.3.2两个变量的线性相关在一条高速公路上,一辆轿车以80千米/时的速度匀速行驶.随着时间t的变化汽车行驶的路程s也相应发生着变化.问题提出1.函数是研究两个变量之间的依存关系的一种数量形式.对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系.函数关系:两个变量之间是一种确定的关系(A)(B)(C)(D)ABDC1、下列各情景分别可以用哪一幅图来近似的刻画(1)汽车紧急刹车(速度与时间的关系)(2)人的身高变化(身高与年龄的关系)(3)跳高运动员跳跃横杆(高度与时间的关系)(4)一面冉冉上升的红旗(高度与时间的关系)2.在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?由学习经验可知:物理成绩确实与数学成绩有一定的关系,除此之外,学习兴趣、学习时间、教学水平等,也是影响物理成绩的一些因素,但这两个变量是有一定关系的,它们之间是一种不确定性的关系.类似于这样的两个变量之间的关系,我们称之为相关关系。有必要从理论上作些探讨,如果能通过数学成绩对物理成绩进行合理估计,将有着非常重要的现实意义.不是练习1:考察下列问题中两个变量之间的关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄.这些问题中两个变量之间的关系是函数关系吗?(1)商品销售收入与广告支出经费之间的关系.商品销售收入与广告支出经费有着密切的联系,但商品销售收入不仅与广告支出多少有关,还与商品质量,居民收入,生活环境等因素有关.(2)粮食产量与施肥量之间的关系.在一定范围内,施肥量越大,粮食产量就越高.但是,施肥量并不是决定粮食产量的唯一因素,因为粮食产量还要受到土壤质量,降雨量,田间管理水平等因素的影响.(3)人体内的脂肪含量与年龄之间的关系.在一定年龄段内,随着年龄的增长,人体内的脂肪含量会增加,但人体内的脂肪含量还与饮食习惯,体育锻炼等有关,可能还与个人的先天体质有关.练习1:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的成语吗?知识探究(一):变量之间的相关关系思考1:考察下列问题中两个变量之间的关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄.这些问题中两个变量之间的关系是函数关系吗?均不是!上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何?(1)函数关系:当自变量取值一定时,因变量取值由它唯一确定正方形面积S与其边长x之间的函数关系S=x2,一块农田的水稻产量与施肥量之间的关系。1.两变量之间的关系(2)相关关系:当自变量取值一定时,因变量的取值带有一定的随机性对自变量边长的每一个确定值,都有唯一确定的面积的值与之对应。确定关系水稻产量并不是由施肥量唯一确定,在取值上带有随机性不确定关系讲授新课一:变量之间的相关关系2、相关关系与函数关系的区别与联系(1)相关关系与函数关系的异同点:相同点:均是指两个变量的关系不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系;即,函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是随机关系.(2)函数关系与相关关系之间有着密切联系:在一定的条件下可以相互转化.而对于具有线性相关关系的两个变量来说,当求得其回归直线方程后,又可以用一种确定性的关系对这两个变量间的取值进行估计:对于一个变量,可以控制其数量大小的变量称为可控变量,否则称为随机变量,那么相关关系中的两个变量有哪几种类型?(1)一个为可控变量,另一个为随机变量;(2)两个都是随机变量.3、判断相关关系的基本程序两个变量→一个变量值一定→另一个变量带有不确定性→相关关系4、相关关系的类型相关关系可分为线性相关,非线性相关两类.注意:两个变量之间的关系具有确定性关系—函数关系.两个变量变量之间的关系具有随机性,不确定性—相关关系.1、探究下面变量间的关系:1.球的体积与该球的半径;2.粮食的产量与施肥量;3.小麦的亩产量与光照;4.匀速行驶车辆的行驶距离与时间;5.角α与它的正切值A2、下列两变量中具有相关关系的是()A、角度和它的余弦值B、正方形的边长和面积C、成人的身高和视力D、身高和体重D练习:3.下列两个变量之间的关系哪个不是函数关系()A.角度和它的余弦值B.正方形边长和面积C.正n边形的边数和它的内角和D.人的年龄和身高D例如:在7块并排、形状大小相同的试验田上进行施化肥量对水稻产量影响的试验,得到如下表所示的一组数据(单位:kg):并作图施化肥量x15202530354045水稻产量y330345365405445450455y水稻产量x(施化肥量)1020304050300350400450500知识探究(二):散点图【问题】在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数.年龄23273941454950脂肪9.517.821.225.927.526.328.2年龄53545657586061脂肪29.630.231.430.833.535.234.6思考1:对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?年龄23273941454950脂肪9.517.821.225.927.526.328.2年龄53545657586061脂肪29.630.231.430.833.535.234.6思考2:为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗?051015202530354020253035404550556065年龄脂肪含量思考3:上图叫做散点图,你能描述一下散点图的含义吗?在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形,称为散点图.散点图作用:用来判断两个变量是否具有相关关系.思考4:观察散点图的大致趋势,人的年龄与人体脂肪含量具有什么相关关系?051015202530354020253035404550556065年龄脂肪含量在上面的散点图中,这些点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.一般地,如果两个变量成正相关,那么这两个变量的变化趋势如何?思考6:如果两个变量成负相关,从整体上看这两个变量的变化趋势如何?其散点图有什么特点?思考7:你能列举一些生活中的变量成正相关或负相关的实例吗?正相关的特点:一个变量随另一个变量的变大而变大,散点图中的点散布在从左下角到右上角的区域负相关的特点:一个变量随另一个变量的变大而变小,散点图中的点散布在从左上角到右下角的区域思考:1、两个变量成负相关关系时,散点图有什么特点?答:两个变量的散点图中点的分布的位置是从左上角到右下角的区域,即一个变量值由小变大,而另一个变量值由大变小,我们称这种相关关系为负相关。运鱼车的单位时间与存活比例00.511.500.20.40.6单位时间存活比例2、你能举出一些生活中的变量成正相关或者负相关的例子吗?如学习时间与成绩,负相关如日用眼时间和视力,汽车的重量和汽车每消耗一升汽油所行驶的平均路程等。注:若两个变量散点图呈上图,则不具有相关关系,如:身高与数学成绩没有相关关系。0204060801001200204060801001、散点图的特点形象地体现了各数据的密切程度,因此我们可以根据散点图来判断两个变量有没有线性关系.2、从散点图上可以看出,如果变量之间存在着某种关系,这些点会有一个集中的大致趋势.正相关:如果散点图的点散布在从左下角到右上角的区域,即一个变量的值由小变大时,另一个变量的值也近似的由小变大,对于两个变量的这种相关关系,我们称为正相关负相关:如果散点图的点散布的位置是从在左上角到右下角的区域,即一个变量的值由小变大时,另一个变量的值也近似的由大变小,对于两个变量的这种相关关系,我们称为负相关.注意:1.如果所有的样本点都落在某一函数曲线上,变量之间具有函数关系2.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系3.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系只有散点图中的点呈条状集中在某一直线周围的时候,才可以说两个变量之间具有线性关系,才有两个变量的正线性相关和负线性相关的概念,才可以用回归直线来描述两个变量之间的关系例1在下列两个变量的关系中,哪些是相关关系?①正方形边长与面积之间的关系;②作文水平与课外阅读量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系.例2以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:房屋面积(平方米)617011511080135105销售价格(万元)12.215.324.821.618.429.222画出数据对应的散点图,并指出销售价格与房屋面积这两个变量是正相关还是负相关.05101520253035050100150面积售价售价随房屋面积的变大而增加,散点图中的点散布在从左下角到右上角的区域.1.对于两个变量之间的关系,有函数关系和相关关系两种,其中函数关系是一种确定性关系,相关关系是一种非确定性关系.3.一般情况下两个变量之间的相关关系成正相关或负相关,类似于函数的单调性.2.散点图能直观反映两个相关变量之间的大致变化趋势,利用计算机作散点图是简单可行的办法.课堂小结一、选择题(每题5分,共15分)1.下列关系中为相关关系的有()①学生的学习态度和学习成绩之间的关系;②教师的执教水平与学生的学习成绩之间的关系;③学生的身高与学生的学习成绩之间的关系;④某个人的年龄与本人的知识水平之间的关系.(A)①②(B)①③(C)②③(D)②④【解析】选A.据相关性的定义可知①②为相关关系,③④无相关关系.巩固练习3.在下列各变量之间的关系中:①汽车的重量和百公里耗油量.②正n边形的边数与内角度数之和.③一块农田的小麦产量与施肥量.④家庭的经济条件与学生的学习成绩.是相关关系的有()(A)①②(B)①③(C)②③(D)③④二、填空题(每题5分,共10分)4.(2010·广东高考)某市居民2005~2009年家庭平均收入x(单位:万元)与年平均支出y(单位:万元)的统计资料如表所示:根据统计资料,居民家庭年平均收入的中位数是______,家庭年平均收入与年平均支出有______的线性相关关系.(填“正相关”、“负相关”)【解析】收入数据按大小排列为:11.5、12.1、13、13.5、15,所以中位数为13.答案:13正相关三、解答题(6题12分,7题13分,共25分)6.某品牌服装的广告费支出x(单位:万元)与销售额y(单位:万元)之间有如下的对应数据:试画出散点图,并判断广告费x与销售额y是否具有线性相关关系.【解析】根据题中数据画出散点图如下:观察散点图,可以发现5个样本点从整体上看大致在一条直线附近,所以变量x、y之间具有线性相关关系.100多年前,有位英国遗传学家(Galton)注意到当父亲身高很高时,他的儿子的身高一般不会比父亲身高更高。同样如果父亲很矮,他的儿子也一般不会比父亲矮,而会向一般人的均值靠拢。当时这位英国遗传学家将这现象称为回归,现在这个概念引伸到随机变量有向回归线集中的趋势。即观察值不是全落在回归线上,而是散布在回归线周围。但离回归线越近,观察值越多,偏离较远的观察值极少,这种

1 / 45
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功