技术手册技术手册2湿空气PvPvPdPdPa饱和空气层填料水薄膜填料(胶片)图1.冷却塔水蒸发过程工作原理图P〃v—水面薄饱和层的蒸汽压力PaPv—湿空气中的水蒸汽分压力Pa一、冷却塔基本工作原理1.1冷却塔中的散热关系在湿式冷却塔中,热水的温度高,流过水表面的空气的温度低,水将热量传给空气,由空气带走,散到大气中去,水向空气散热有三种形式①接触散热、②蒸发散热、③辐射散热。冷却塔主要靠前两种散热,辐射散热量很小,可勿略不计。1.2蒸发散热原理蒸发散热通过物质交换,即通过水分子不断扩散到空气中来完成。水分子有着不同的能量,平均能量有水温决定,在水表面附近一部分动能大的水分子克服邻近水分子的吸引力逃出水面而成为水蒸气,由于能量大的水分子逃离,水面附近的水体能量变小,因此,水温降低,这就是蒸发散热,一般认为蒸发的水分子首先在水表面形成一层薄的饱和空气层,其温度和水面温度相同,然后水蒸气从饱和层向大气中扩散的快慢取决于饱和层的水蒸气压力和大气的水蒸气压力差,即道尔顿(Dolton)定律,可用图1表示此过程。1.3冷却水塔的工作原理实际上冷却水塔工作原理就是上述水蒸发热质交换的运用,即将热水喷洒在散热材表面与通过之移动空气相接触,此际热水与冷空气之间产生湿热之热交换作用,同时部分的热水被蒸发,也即蒸发水汽技术手册3填料空气出口G,H,T21211G,H,T空气入口2热水入口L,t10冷水出口,L,T12图2.冷却塔工作原理示意图中其蒸发潜热被排放至空气中,最后经冷却后的水落入水槽内,然后再回到所需设备利用、循环,具体见图2。根据热力学定律,热水经过冷却塔时,放出之热量相等空气由入口至出口时所吸收之热量。L×(t2-t1)=G×(h2-h1)L/G=(h2-h1)/(t2-t1)=e/R其质量之传递可以下列公式表示:G×eg=ka(EI—eg)dv------(1)eg:空气总质量热焓k:冷却塔单位面积之热惯流率系数a:常数EI:在一定水温时饱和空气热焓cal/kg(BTU/Ib)L:循环水量LPM(GPM)T2:热水温度℃(°F)T1:冷水温度℃(°F)G:风量kg/min(1b/min)H2:出风口空气热焓kcal/kgofdryair(BTU/1bofdryair)H1:入风口空气热焓kcal/kgofdryair(BTU/1bofdryair)L/G:水/气比E:空气热焓差kcal/kgofdryair(BTU/1bofdryair)R:水温度差℃(°F)1.4冷却塔有效容积(m3、ft3)图3为冷却塔冷却过程曲线图,上端之曲线为水的运转线,起始热水温度A点至冷水温度B点为止;下端以斜线C-D为空气运转线,C点位置在相当于入风口湿球温度之热焓处,水与空气比(L/G)等于空气运转线C-D之斜率,D点表示出风口空气温度,斜率C-D之投技术手册4ABECDFh'(空气在入塔水温下的饱和焓)h(空气出塔时的焓)h1'(空气于出塔水温下的饱和焓)h1(空气入塔的焓)空气出饱和曲线空气实际温度曲线焓推动力△H空气工作曲线L/G空气焓值.KCAL/kg空气入塔温度出塔水温空气出塔湿球空气出塔温度入塔水温温度℃T1t2tw1t1T2tw2A,逼近R,冷幅图3:冷却塔曲线图∫t1t2dt(h'-h)影长度为冷却温度差,F点表示出风口空气之湿球温度。积分值为冷却过程中产生之热传递单位数,其值等于图3中之ABCD四点构成面积,此值等于冷却塔之特性值,其值随水与空气之比率而变化。kaV/L=(L/G)n×CkaV/L:冷却塔特性质L/G:水/空气比C:试验常数N:试验常数Ka:填料容积散质系数V:填料体积二、冷却塔性能参数2.1冷却效能部分人有一个错误的概念,就是以冷幅作为冷却水塔效能的标准,并以着来选择合适的散热量,其实冷幅是冷却水塔运作的反映与效能是没有直接之关系。热量是循环系统内所产生的负荷,它的单位为千卡/小时(Kcal/HR)计算公式如下:热量=循环水流量×冷幅×比热系数热量负荷和冷却水塔的效能是没有直接关系,所以无论冷却水塔的体积大小,当热量负荷和循环水流量不变而运作下,在理论上冷幅都是固定的。技术手册5若一座冷却水塔能适合以下之条件而运作:i)出水温度为32℃及37℃ii)循环水流量为200L/Siii)环境湿球温度为27℃iv)逼近=32-27=5℃v)冷幅=37-32=5℃计算其热量应为3600000Kcal/HR此冷却水塔也能适合以下之条件有效地运作:i)出水温度为33℃及43℃ii)循环水流量为200L/Siii)环境湿球温度为23℃iv)逼近=33-23=10℃v)冷幅=43-33=10℃计算其热量应为7200000Kcal/HR从上述举例可显示出相同冷却水塔可在不同热量下运作,而热量的差别示极大,所以不能单靠冷幅来衡量冷却水塔的效能。前文提及冷却水塔的散热量直接受环境湿球温度影响,而以上两列因环境湿球温度有差别,导致逼近不同,所以同一冷却水塔能在以上两条件下运作如常,证明冷却水塔的效能是直接与逼近有密切关系而不能单以冷幅计算。2.2蒸发耗损量当冷却回水和空气接触而产生作用,把其水温降时,部分水蒸发会引起冷却回水之损耗,而其损耗量和入塔空气的湿球温度及流量有关,以数学表达式作如下说明:令:进水温度为T1℃,出水温度为T2℃,湿球温度为Tw,则技术手册6*:R=T1-T2(℃)------------(1)式中:R:冷却水的温度差,对单位水量即是冷却的热负荷或制冷量Kcal/h对式(1)可推论出水蒸发量的估算公式*:E=(R/600)×100%------------(2)式中:E----当温度下降R℃时的蒸发量,以总循环水量的百分比表示%,600-----考虑了各种散热因素之后确定之常数。如:R=37-32=5℃则E={(5×100)/600}=0.83%总水量或e=0.167%/1℃,即温差为1℃时的水蒸发量*:A=T2-T1℃----------(3)式中:A-----逼近度,即出水温度(T2)逼近湿球温度的程度℃,按热交换器设计时冷端温度差取值的惯例,宜取A≥3℃(CTI推进A≥5oF即2.78℃)A不是做不到,而是不合理和不经济。2.3漂水耗损量漂水耗损量的大小是和冷却水塔(是否取用隔水设施),风扇性能(包括风量、风机及风扇叶角度的调整以及它们之间的配合等),水泵的匹配以及水塔的安装质量等因素有关,通常它的耗损量是很少的,大约在冷却器水总流量的0.2%以下。2.4放空耗损量由于冷却回水不断的蒸发而令其变化(使水质凝结)这凝结了的冷却回水能使整个循环系统内产生腐蚀作用及导致藻类生长,所以部分的冷却回水要定期排出,以便补充更新,而这排出的冷却回水量,就称为〖放空量〗。通常此放空量控制在冷却回水总量的0.3%或由其所需要水质的优劣而定。技术手册7放空量B=E/(N-1)-CB-----放空量(%,L/min)E-----蒸发量(%,L/min)N-----凝结量C-----漂水量(%,L/min)2.5补充量上述提及的冷却塔回水耗损量要不断补充,而补充量的计算如下:M=E+C+BM-------补充量E-------蒸发耗损量C-------漂水耗损量B------放空量假设:蒸发耗损量=0.83%漂水耗损量=0.1%放空耗损量=0.25%补充量=0.83+0.1+0.25=1.18%三、冷却水塔特性★优良冷却能力★低噪音设计塔体特殊设计提供较大的散水面采用高效超静宽叶轴流风机,设计积,均匀的水流分布,合理水气配较慢的运转速度或另加装“超分配,冷却性能大大提高。低噪音围板”,以降低噪音污染。★高经济效益的运转成本★耐腐蚀、寿命长轴流式的排风设计,较一般离心冷却塔外壳采用玻璃钢机构、钢式的风量大,风扇叶采用铝合金结构全部经热浸镀锌处理(HOT制成,质轻平稳配合高效率的减DIPGALVANIZATION),绝无腐蚀。技术手册8速机需要马力较一般小,传动配★用途广泛件中,传动配件中V型带或齿轮可应用于冷冻、空调、食品、轻纺均自国外进口,使用寿命长。化工、电力、旅业等行业。以上为本公司的标准设计,但由于种种原因,用户提出的要求是难以现有产品系列完全满足的,非标准设计是经常发生的,本公司可根据客户要求设计非标准的各种塔,并保证快捷、合理、经济。--------------------重要配件--------------------3.2电机及风扇效能风机:本公司水塔所用的标准型、低噪型、超低噪型风机是由浙江上风冷却塔有限公司专门设计,均按宽叶大弦长、扭曲形叶设计。重量轻、风量大能耗低、噪音低流线型高强度风筒保证风机入口、出口气流均匀减小风机马力。并可改变叶片安装角度,满足不同工艺要求和提高装置效率,可根据用户需要配备风机振动保护装置。电机:采用全封闭式冷却应用电机,防护等级P55,380V/3φ/50Hz,并可根据用户要求配备国产或进口马达及相匹配的变频器。3.3壳体的性能塔的壳体(包括低盆)是采用高强度“FRP”复合材料制成,表面耐腐蚀、耐侯胶衣层采用进口材料制造,其色种内含抗紫外线稳定剂,具有品质好、外观美、难褪色技术手册9、抗老化等特点。3.4填料的性能本公司填料采用亲水性材料,水能在填料表面形成水膜,缓慢流下,水有充分的散热时间,所以其之散热效率高。普通胶片PVC………最高工作温度可达54.5℃高温胶片UPVC……最高工作温度可达70℃3.5转头及喷头转头:是本公司自行设计制造的(高温型塔采用铜合金材料)。有两种:小塔采用ABS材料,中小型以上塔采用铜合金材料,经长年运转表明,转头经久耐用,不会像铝制转头一样因久用而转不动。喷头:采用专用喷头,具有喷头水压低、喷洒均匀且不会堵塞、耐温、耐腐蚀等特点。