2.3复习课(整式的加减中的易错题)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

《整式的加减》中的易错题知识结构图:整式的加减整式的概念整式的计算整式的应用单项式多项式系数次数项,项数,常数项,最高次项次数同类项与合并同类项去括号化简求值用字母来表示生活中的量一、基本概念中的易错题1,单项式的定义例1,下列各式子中,是单项式的有______________(填序号)①a;②-—;③x+y④xy;⑤—;⑥——;⑦—①、②、④、⑦122πxx+12xπ注意:1,单个的字母或数字也是单项式;2,用加减号把数字或字母连接在一起的式子不是单项式;3,只用乘号把数字或字母连接在一起的式子仍是单项式;4,当式子中出现分母时,要留意分母里有没有字母,有字母的就不是单项式,如果分母没有字母的仍有可能是单项式(注:“π”当作数字,而不是字母)2,单项式的系数与次数单项式系数次数例2指出下列单项式的系数和次数a32ab32bca732bayx222113131675432,单项式的系数与次数注意:1,字母的系数“1”可以省略的,但不代表没有系数(次数也是同样道理);2,有分母的单项式,分母中的数字也是单项式系数的一部分;3,注意“π”不是字母,而是数字,属于系数的一部分;4,计算次数的时候并不是简单的见到指数就相加,注意单项式的次数指的是字母的指数和;3,多项式的项数与次数例3下列多项式次数为3的是()12..1.165.3222222xyxDbabbaCxxBxxAC注意(1)多项式的次数不是所有项的次数的和,而是它的最高次项次数;(2)多项式的每一项都包含它前面的符号;(3)再强调一次,“π”当作数字,而不是字母例4请说出下列各多项式是几次几项式,并写出多项式的最高次项和常数项;①22-x2y-xy3是次项式,最高次项是,常数项是。②———————是次项式,最高次项是,常数项是。四三3xy52四三322yx31πx3-x2y2+134,书写格式中的易错点例5下列各个式子中,书写格式正确的是()3.1.3.3.211..2baFabEaDaCabBbaAF4,书写格式中的易错点1、代数式中用到乘法时,若是数字与数字乘,要用“×”;若是数字与字母乘,字母与字母相乘,乘号通常写成·”或省略不写,如3×y应写成3·y或3y。2、带分数与字母相乘,要写成假分数3、代数式中出现除法运算时,一般用分数写,即用分数线代替除号。4、系数一般写在字母的前面,且系数“1”往往会省略;例6王强班上有男生m人,女生比男生的一半多5人,王强班上的总人数(用m表示)为______人。易错点:结果不进行化简,直接写).521(mm点拨:结果中有它们是同类项,应合并以保证最后的结果最简.正确的写法是,21,mm).523(m二、运算过程中的易错题1,同类项的判定与合并同类项的法则:例1判断下列各式是否是同类项?323232)3(xyyx与22102)2(与2232)4(yxyx与323222)1(yxba与扣紧同类项定义回答问题例2下列合并同类项的结果错误的有_______________.;0;212213;123;527;642;523222222532ababxxxabababababxxxaaa⑥⑤④③②①①、②、③、④、⑤扣紧合并同类项的法则回答问题;0;212213;123;527;642;523222222532ababxxxabababababxxxaaa⑥⑤④③②①注意:1,合并同类项的法则是把同类项的系数相加,字母和字母的次数不变;2,合并同类项后也要注意书写格式3,如果两个同类项的系数互为相反数,那么合并同类项后,结果得____;0例3合并同类项:(1)3x2y-2xy2+—xy2-—yx21332(2)3a-a-b-2b2-a+b-2b2例3合并同类项:小明的解法:yx2)233123()1(解:原式=yx261=(1)错在把所有项都当作同类项了;)312()233()1(2222xyxyyxyx解:原式=正确的解法:223523xyyx=(1)3x2y-2xy2+—xy2-—yx21332例3合并同类项:小明的解法:)22()()3()2(22bbbbaaa解:原式=ba2=(2)错在把结合同类项时弄错了符号;)22()()3()2(22bbbbaaa解:原式=正确的解法:24ba=合并同类项有两个关键点,一是找准同类项,二是不要弄丢、弄错符合。(2)3a-a-b-2b2-a+b-2b22,去括号中的易错题:判断下列各式是否正确:dcbadcba)()1(√×bacbac2)(2)2(×2343)2(43)3(22xxxx()()()×cbacba)()4(()2,去括号中的易错题:去括号时,1,注意括号外面的符号,括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不用变符号;括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。2,注意外面有系数的,各项都要乘以那个系数,不要漏乘;整式的加减一般步骤是(1)如果有括号就先去括号,(2)然后再合并同类项.4,多重括号化简的易错题]2)1(32[3,1222xxxx化简:]2332[3222xxxx解:原式=22223323xxxx=32)233(222xxxx=3242xx=注意:有多重括号的,一般先去小括号,再去中括号,最后再去大括号;3,化简求值中的易错题:;2)643(31)14(3,1232xxxxx的值,其中求多项式2343123232xxxx解:原式=2312343223xxxx=1123523xxx=(先去括号)降幂排列(合并同类项,化简完成)当x=-2时(代入)1)2(12)2(35)2(23原式=(代入时注意添上括号,乘号改回“×”)1243208=3239=三、整式的应用中的易错题拓展学习:1,“A+2B”类型的易错题:例1若多项式A=3x2-2x+1,B=-2x2+x+1计算多项式A-2B;)12(2)123(222xxxxBA解:22412322xxxx21224322xxxx1472xx注意:列式时要先加上括号,再去括号;例2一个多项式A加上得求这个多项式A?2532xx3422xx342)253(22xxxxA解:因为)253(34222xxxxA所以25334222xxxxA23543222xxxxA12xxA注意:我们在移项的时候是整体移项,不要忘了添上括号;例2若长方形的一边长为a+2b,另一边长比它的3倍少a-b,求这个长方形的周长?分析:如果直接列式的话,非常麻烦,我们可以先求出另一边长,再求周长,这样就比较容易求出答案;解:一边长为:a+2b;另一边长为:3(a+2b)-(a-b)=3a+6b-a+b=3a-a+6b+b=2a+7b;周长为:2(a+2b+2a+7b)=2(a+2a+2b+7b)=2(3a+9b)=6a+18b;答:长方形的周长为6a+18b2,实际问题中的易错题:例1某种手机卡的市话费上次已按原收费标准降低了m元/分钟,现在再次下调20%,使收费标准为n元/分钟,那么原收费标准为().分钟元分钟元分钟元分钟元/)51.(/)51.(/)45.(/)45.(mnDmnCmnBmnAB点拨:为了弄清各数之间的关系,我们可以借助方程来求解.假设原收费标准为每分钟x元,可得:解得.应选B.,)%)(201(nmxmnx45从错误中吸取教训,从失败中取得进步,胜利必将是你的!

1 / 30
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功